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ARTICLE INFO ABSTRACT

Keywords: Realizing the full potential of incorporating mine tailings as supplementary cementitious materials (SCMs) to
Mine tailings replace ordinary Portland cement (OPC) requires carefully balancing the benefits—such as cost reduction and
Cement

emissions mitigation—while ensuring the mixtures achieve the required strength. Given the demonstrated
effectiveness of combining machine learning (ML) with optimization algorithms in similar multi-objective
Transformer model optimization (MOO) problems, for the first time, this study employed a novel tabular prior data fitted
Multi-objective optimization network (TabPFN) model to forecast the uniaxial compressive strength (UCS) of those mix designs. The TabPFN
Waste reuse model outperformed traditional boosting ML models, achieving an R? of 0.973 and a low prediction error of
2.115 MPa. Notably, its pre-trained architecture reduced computational time by 1045 s. Building on this, a MOO
case study was developed using the TabPFN model to predict UCS as the first objective, alongside separate
equations used as objective functions to calculate cost and total emissions. This MOO problem was tackled using
the non-dominated sorting genetic algorithm-II (NSGA-II). The optimized mixture designs achieved better bal-
ances between strength, cost, and emissions than those obtained through experimental methods, validating the
use of this ML-based method for mixture design. Finally, a software tool—GreenMix Al—was developed to
provide integrated access to the entire framework, translating advanced research into practical application. In
essence, this research supports the reuse of mine tailings as SCMs and provides a practical pathway to developing
more economical and sustainable cementitious mixtures.

Uniaxial compressive strength
Machine learning

benefits, it can reduce mixture strength. This is because less OPC leads to
lower formation of primary hydration products and Ca(OH),, leaving
much of the tailings unreacted and weakening the matrix [4]. This
limitation has been documented in several studies. For example, Kara
[5] reported a 15.7 % decrease in uniaxial compressive strength (UCS)
when the copper tailings replacement level was increased from 10 % to
15 %. Similarly, Ince [6] found that replacing more than 30 % of OPC
with gold tailings led to a reduction in strength, despite notable im-
provements in cost and emissions. These findings highlight the need to
strike a careful balance among trade-offs—strength retention, cost
reduction, and emissions mitigation. Traditionally, researchers have
relied on experimental testing to handle this multi-objective optimiza-
tion (MOO) problem. However, this process is time-consuming, expen-
sive, and impractical for evaluating all possible mixture designs [2]. As a
result, researchers often limit their studies to a narrow set of mixture

1. Introduction

The reuse of mine tailings as supplementary cementitious materials
(SCMs) to partially replace ordinary Portland cement (OPC) in cemen-
titious mixtures has gained increasing attention in recent years. This
strategy not only helps reduce tailings waste but also offers several key
advantages. First, mine tailings can enhance strength by reacting with
calcium hydroxide (Ca(OH)»), a by-product of OPC hydration, to form
additional hydration products [1]. Second, as a waste material with no
economic value, tailings help reduce overall mixture costs [2]. Third,
tailings lower greenhouse gas (GHG) emissions under the zero-burden
concept, which attributes impacts only to the extraction of valuable
minerals, not to waste [3].

Although higher OPC replacement with mine tailings offers greater
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Nomenclature

SCM Supplementary cementitious material
OPC Ordinary Portland cement

ML Machine learning

MOO Multi-objective optimization

TabPFN Tabular prior data fitted network

ucs Uniaxial compressive strength

NSGA-II Non-dominated sorting genetic algorithm-II
SHAP SHapley Additive exPlanations

GBR Gradient boosting regressor

XGBR Extreme gradient boosting regressor
LGBR Light gradient boosting regressor
RMSE Root mean squared error

MAE Mean absolute error

SSA Specific surface area

PSD Particle size distribution

LCA Life cycle analysis

C-S-H Calcium silicate hydrate

C-A-S-H Calcium aluminate silicate hydrate
Ca(OH), Calcium hydroxide

CsS Tricalcium silicate

CoS Dicalcium silicate

CO5 eq Carbon dioxide equivalent

PCE Polycarboxylate ether

TSF Tailings storage facility

TPE Tree-structured Parzen estimator

MOEA/D Multi-objective evolutionary algorithm based on
decomposition

RoW Rest of the world

designs. For example, although Ince [6] examined OPC replacement
ratios from 10 % to 40 %, tests were conducted only at 10 % intervals,
leaving many intermediate ratios unexplored. Due to these limitations, it
remains unclear whether better-performing designs could exist that offer
improved trade-offs. Therefore, a more efficient and practical method is
needed to identify optimal designs for these novel cementitious mixtures
and to uncover their full potential.

Data-driven intelligent design approach, which combines machine
learning (ML) and optimization algorithms, has emerged as a promising
alternative for efficiently optimizing cementitious mixture designs.
Unlike traditional experimental approaches, which are limited to testing
a finite number of designs due to practicality, the intelligent design
framework utilizes the patterns learned by ML models and applies them
in optimization algorithms like the non-dominated sorting genetic al-
gorithm II (NSGA-II) [7] to explore a broader space of potential mix-
tures. Such approaches have revealed a vast number of superior designs
not tested experimentally. For example, Cao et al. [8] applied a com-
bined ML and optimization approach, identifying 165 alternative
optimal mixture designs. In this study, one selected design—with a 26 %
replacement of OPC using waste slag—achieved a cost reduction of
31.64 Chinese Yuan and a decrease in GHG emissions of 31.04 kg per
cubic meter, compared to the best-performing design obtained through
experimental methods. These studies demonstrate that data-driven
intelligent design approach offers a highly efficient and practical solu-
tion for addressing MOO problems in cementitious mixture design.

However, existing intelligent designs have primarily relied on con-
ventional ML models, which depend on large, high-quality datasets and
often require frequent tuning to maintain accuracy on new data [2]. In
contrast, recent advances in transformer-based ML models offer a
promising alternative, due to their ability to transfer knowledge from
prior training to new datasets [9]. This leads to better predictive per-
formance and eliminates the need for extensive retraining [9]. The
tabular prior data fitted network (TabPFN) model [10], is a recent
transformer-based model, pre-trained on millions of synthetic datasets,
that has showed enhanced performance relative to standard ML tech-
niques. For instance, Yu et al. [11] used TabPEN to predict urban air
temperature and reported a 17.4 % reduction in prediction error
compared to boosting models. Owing to their pre-trained architecture
and strong generalization capabilities with limited data,
transformer-based ML models have a significant potential to yield more
accurate predictions and, consequently, improve optimization outcomes
compared to conventional models. Despite their potential, the applica-
tion of transformer-based ML models with optimization algorithms to
address the MOO challenge of designing mixtures with mine tailings as
SCMs remains largely unexplored.

To this end, this research employed a new data-driven intelligent
design, which used a transformer-based TabPFN model to forecast the

UCS of cementitious materials incorporating mine tailings as SCMs. To
compare performance and computational efficiency, conventional
boosting models were also constructed alongside the TabPFN model.
Next, the predictions of the TabPFN model were interpreted using
SHapley Additive exPlanations (SHAP) to enhance the transparency of
results. Afterwards, a MOO case study was performed using three
objective functions—the TabPFN model for strength prediction, along
with equations for cost and emissions—to assess the feasibility of
applying this intelligent approach. Finally, GreenMix Al—a user-
friendly software tool—was developed to provide access to the trained
ML models and optimization algorithms.

This study serves as a trailblazer in advancing sustainable cement-
based materials, making four key contributions. First, it exploits a pre-
trained model architecture—TabPFN—to accurately predict UCS using
limited data, offering a powerful solution for data-scarce domains and
eliminating the need for time-consuming model training. Second, this
work breaks new ground by utilizing intelligent approaches to uncover
underlying relationships between critical factors—such as tailings
characteristics, mix proportions, and curing conditions—and UCS of
mixtures using tailings as SCMs. This critical information empowers
engineers with deeper insights for performance-driven mixture design.
Third, this work is a pioneer in applying MOO to optimize these mix-
tures, delivering designs that are not only cost-effective and sustainable
but also difficult to achieve through experimental trials alone. Fourth,
the newly developed software tool—GreenMix AI—bridges the gap be-
tween research and practice by making data-driven intelligent design
methods easily accessible for practical, real-world applications. In
summary, this research advances the reuse of mine tailings and supports
the development of an eco-friendly and economically resilient building
sector.

2. Methodology
2.1. Overview of the research framework

Fig. 1 provides an overview of the research framework adopted in
this study. Initially, experimental data were gathered from published
studies as discrete data points. The compiled dataset was complete, with
no missing values, and included detailed information on mixture designs
and materials through multiple input features, along with the corre-
sponding UCS values as the output. The dataset was subsequently split at
random into two parts: 80 % for training and 20 % for testing. Using the
training dataset, three boosting algorithms—gradient boosting regressor
(GBR), extreme gradient boosting regressor (XGBR), and light gradient
boosting regressor (LGBR)— were employed to build predictive models.
These models were further optimized using the Optuna hyperparameter
tuning library (version 4.2). The transformer-based model, TabPFN, did
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Fig. 1. Overview of the research framework.

not require model training due to its pre-trained architecture [10]. Each
model was then fitted using the training data to create prediction
models. Their efficacy was assessed on the test data portion using four
metrics: root mean squared error (RMSE), coefficient of determination
(R?), mean absolute error (MAE), and the A-20 score. Subsequently, the
best-performing model was interpreted using SHAP analysis and incor-
porated into MOO case studies using the NSGA-II algorithm. The cost
and life cycle analysis (LCA) data of constituent materials used in the
MOO study were extracted from the literature and OpenLCA 2.4.1
software analysis (integrated with Ecoinvent 3.11 database), respec-
tively. Finally, GreenMix Al, a user-friendly software was developed
providing easy access to the models and algorithms. The entire meth-
odology was implemented in the Google Colab Jupyter notebook envi-
ronment, using python 3.11.13 and scikit-learn 1.6.1, with access to an
NVIDIA T4 Tensor Core GPU.

2.2. Dataset

2.2.1. Dataset construction

An initial review of the literature was systematically performed to
identify research articles reporting UCS results for cementitious mate-
rials utilizing tailings as SCMs. The search was performed on reputable
research indexing platforms, comprising Web of Science, Compendex
and Scopus, using terms like cement, mine tailings, mine waste, sup-
plementary cementitious materials and uniaxial compressive strength. A
database of experimental results was compiled from the selected arti-
cles, containing detailed information on various inputs and their asso-
ciated UCS values as the output. It is important to note that some articles
were excluded due to missing information, such as material properties or
chemical compositions. Additionally, this study focused solely on mix-
tures containing mine tailings, and articles involving other SCMs (e.g.,
fly ash, slag) in combination with mine tailings were not considered.
This decision was made because such data points are limited in number,
and their inclusion could introduce bias into the dataset due to their
underrepresentation.

Ultimately, a total of 399 unique data points were collected from 25
research articles published between 1950 and 2025. Table 1 summarizes
the research articles referenced for data extraction in this study,
alongside the specific category of mine tailings reported in each article.
This dataset represents a significant advancement over those reported in
previous studies, which included only 24 data points (later combined

Table 1
Research articles selected for data extraction.
Tailings category Reference Tailings category Reference

1 Copper [14] 14 Coal [15]
2 Copper [16] 15 Iron [171
3 Copper [18] 16 Zinc [19]
4 Copper [20] 17 Marble [21]
5 Zinc, Copper, Gold [22] 18 Gold [23]
6 Iron [24] 19 Iron [25]
7 Iron [26] 20 Iron [25]
8 Tungsten [27] 21 Lead, Zinc [28]
9 Copper [5] 22 Phosphorous [29]
10 Molybdenum [30] 23 Iron [31]
11 Phosphate [32] 24 Molybdenum [33]
12 Gold [34] 25 Gold [4]
13 Iron [35]

with a concrete dataset containing no mine tailings) [12] and 148 data
points [13], respectively. Moreover, these datasets were limited to a
single type of mine tailings—copper—whereas the dataset compiled in
this study incorporates data from research on 11 different types of
tailings. This increased diversity enhances the versatility and general-
izability of the models developed using this dataset.

2.2.2. Description and statistical summary of the dataset

The collected dataset consists of 14 input features, with UCS as the
sole output feature, serving as the target variable for model training. The
input features represent a combination of chemical and physical prop-
erties of both OPC and mine tailings, material proportions, and the
curing time of the samples. Specific surface areas (SSAs) of OPC and
mine tailings were included as input features in place of conventional
particle size distribution (PSD) parameters because SSA is a more reli-
able indicator of material reactivity, which reflects the available surface
area for hydration reactions [28]. Since PSD parameters are strongly
correlated with SSA—smaller particle sizes typically result in higher SSA
and increased reactivity—the exclusion of PSD metrics, such as median
particle size, helps reduce redundancy and prevents unnecessary
complexity in the models [28]. In addition, CaO, SiO,, and Al,O3 per-
centages of OPC were selected to represent the type of OPC used across
different studies. While the OPC type could alternatively be included as
a categorical feature (e.g., based on name or grade), oxide composition
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data were preferred, as continuous variables tend to perform better in
ML models [36]. The other possible option was to consider the standard
strength of cement paste (e.g., UCS at 28 days); however, oxide
composition data were consistently reported across all the selected
studies, whereas information on standard strength was missing in some
cases. Similarly, oxide compositions were used as input features to
represent the type of mine tailings, but were limited to Al;03 and SiOs,
as their ions are the primary contributors to forming supplementary
hydration materials—calcium alumino silicate hydrate (C-A-S-H)
gels—which can improve the UCS of the mixtures [37]. In addition, this
decision helped reduce the complexity of the dataset by focusing only on
the most relevant input features, which is especially important when
working with a limited dataset. In addition, to represent the material
proportions used in each study, five input features were included: OPC,
mine tailings, fine aggregates, coarse aggregates, and superplasticizer,
all expressed as mass per unit volume. It should be noted that the dataset
contains mixtures of both mortar and concrete. For mortar mixtures,
which do not contain coarse aggregates, a value of zero was assigned to
the coarse aggregate field. Similarly, for mixtures that did not include
any superplasticizer, a value of zero was used for that feature. Besides
the chosen inputs, other parameters like curing temperature and hu-
midity were not included in this study, as their values remained
consistent (i.e., ambient temperature and relative humidity above 95 %)
across all the studies and did not contribute any variability to the
dataset.

Table 2 provides summary statistics for both the input variables and
UCS. Additionally, Fig. 2 displays data spread histograms for each
feature. According to the statistical summary and visualizations, the
dataset shows wide value ranges and relatively high standard deviations
across input features, which supports the development of more gener-
alized and robust prediction models.

2.3. Machine learning models

2.3.1. Gradient boosting regressor models

The gradient boosting regressor (GBR) models are based on a
sequential boosting approach, which is more advanced than traditional
decision tree or random forest architectures [38]. Although GBR relies
on multiple trees, it contrasts with the random forest method, which
simply averages predictions from many trees [39]. Instead, GBR im-
proves prediction performance iteratively by targeting the errors from
the preceding model at each step [40]. This iterative process allows GBR
to gradually reduce overall prediction error and build a more accurate
and robust model. In this study, in addition to the original GBR model,
two other variations, namely the XGBR [41] and LGBR [42] were also
used to construct prediction models.

Table 2
Summary statistics of the input features and the output.
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2.3.2. Tabular prior data fitted network regressor

TabPFN is a transformer-based ML model specifically designed for
tabular data. Unlike traditional models such as GBR, XGBR, and LGBR,
TabPFN does not require model training, hyperparameter tuning, or
weight adjustments (typically associated with deep learning) [10]. The
architecture of TabPFN consists of three main stages: (1) synthetic data
generation, (2) pre-training, (3) real world prediction (i.e., final appli-
cation) [10]. Instead of relying on limited real-world data, TabPFN is
trained on a very large number of synthetic datasets. These datasets are
created to resemble real tabular problems, with many possible re-
lationships between input features (x) and target values (y) [10]. The
process begins by choosing basic parameters such as dataset size,
number of features, and complexity. Random input values are then
generated assuming normal, uniform, or mixed probability distributions
[10]. Next, these inputs are passed through a causal graph that applies
different transformations, such as small neural networks or decision tree
rules, while Gaussian noise is added to simulate uncertainty [10].
Finally, feature and target node values are extracted, yielding samples of
input-output pairs. By repeating this process millions of times, more
than 100 million synthetic datasets are created for training. This syn-
thetic approach avoids issues such as data scarcity, privacy concerns,
and contamination from using real-world data during training [10].

In the pre-training step, each dataset can be seen as being generated
by a different hypothesis (¢) about how inputs and outputs are related,
where ¢ € @ (set of hypotheses). During training, part of each synthetic
dataset is treated as training data (x feature values and corresponding y
values), while the remaining part is used as test data (x feature values
with held out y values). TabPFN is trained to predict the test values given
the training examples as context [43]. Its transformer architecture al-
lows TabPFN to capture relationships both between features and be-
tween data samples through the two-way attention mechanism [43]. To
do this, TabPEN learns to approximate the posterior predictive distri-
bution (PPD) (Equation (1)), which represents the probabilities of
possible outcomes for test inputs after considering many different hy-
potheses and how well they explain the training data [43].

PVt Xists Do) / Y%, 0)p(Dlg)p(0)de o)

where P (Veest |Xeest, D) is the PPD of test data, p(y|x, ¢) is the probability
distribution of output y under the hypothesis ¢ for x, p(D|¢) is the
probability distribution of given data under the selected hypothesis, and
p(¢) is the prior probability of the selected hypothesis before seeing the
training data. TabPFN conducts the prior fitting of training data by
sampling available hypotheses and synthetic data. This process is
repeated until its parameters (¢) are optimized for the testing data,
conditioned using the training data [43]. This is achieved through
calculating the cross-entropy loss between model prediction and actual
target values (held out). This loss is given by Equation (2).

Input Feature Minimum Q1 (25 %) Q2 (50 %) Q3 (75 %) Maximum Mean Standard Deviation
SSA of OPC (cm?/kg) 2870 3231 3500 3580 5420 3421 268.56
CaO % in OPC 17.6 20.22 21.3 21.88 28.16 21.65 2.65
SiO, % in OPC 33 4.41 5.07 5.62 8.07 5.16 1.23
AlyO3 % in OPC 54.8 61.99 63 64.49 67.22 62.17 3.3
SSA of Mine Tailings (cmz/kg) 670 1814 2840 5776 12666 3793 2742.7
SiO, % in Mine Tailings 1.12 32.2 52.56 63.3 92.9 47.98 26.79
Al>O3 % in Mine Tailings 0 2.16 6.85 13.68 25.1 8.13 6.97
OPC (kg/m?) 164 320.5 410.1 527.3 742.2 416.9 124.63
Mine Tailings (kg/m3) 8.9 53.3 80 175.8 466.6 114.4 87.8
Water (kg/m%) 103.5 160 254.6 293 390.6 243.1 78
Fine Aggregates (kg/m?) 585.9 785 1757.8 1757.8 2343.8 1380.1 528.5
Coarse Aggregates (kg/m>) 0 0 0 857 1503.8 346.5 503.1
Superplasticizer (kg/m>) 0 0 0 3.13 6.7 1.88 2.5
Curing Time (days) 3 7 28 42 920 321 31.26
UCS (MPa) 3 24 33.9 42.85 59.6 33.5 12.4
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Loin = E{ (x4 yie) Dyin }~p0) | — 108 Qo Vst Xtest, Dirain)] @3]
where {(Xeest, Ytest) UDgrain } ~ p(D) is the selected dataset comprising
testing and training data, —log qy (y[m|x[est,Dm-,,) is the cross entropy
loss for true y. after comparing it with the predicted yies.

Data distribution of input features and the UCS.

Because TabPFN is pretrained on millions of synthetic datasets, it can
be applied directly to new tasks without additional training. A user only
needs to provide the training data for the task at hand, which the model
treats as context. Using this context, TabPFN predicts the labels of un-
seen inputs in a single forward pass [10]. On OpenML benchmark
datasets, TabPFN has shown superior performance compared to
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conventional boosting models, achieving speedups of up to 230 x while
maintaining or even improving predictive accuracy [43].

2.4. Optuna framework

Optuna is an open-source optimization framework designed specif-
ically for hyperparameter tuning in ML models. It formulates the tuning
process as an optimization task, aiming to either maximize or minimize a
defined objective function [44]. In this context, the hyperparameters
serve as inputs to the function, and the output is the validation score-
—calculated using a chosen evaluation metric for a given model [44].
Unlike traditional options such as grid or random search, which rely on
predefined or randomly chosen hyperparameter combinations, Optuna
uses a Bayesian optimization approach [45]. This allows it to dynami-
cally select new hyperparameter sets based on the results of previous
trials, enabling it to explore more encouraging areas of the search
domain and significantly improve efficiency [44]. Additionally, Optuna
incorporates a pruning mechanism that monitors the intermediate per-
formance of trials. If a trial is unlikely to yield good results, it can be
terminated early based on a predefined threshold, saving computational
time and resources [44]. In this study, when using Optuna, the
tree-structured Parzen estimator (TPE) [46] was used as the sampling
algorithm, while the Hyperband pruner [44] was employed to terminate
underperforming trials. The optimal hyperparameter combination was
selected based on the minimum average RMSE obtained through
repeated five-fold cross-validation, performed three times for different
splits of the training data. This strategy is particularly important for
limited datasets to ensure sufficient evaluation coverage and reduce the
influence of outliers [47].

2.5. Performance evaluation metrics

This study used four well-established performance evaluation met-
rics for regression tasks: R2, MAE, RMSE, and A-20. Among these, MAE
and RMSE are error-based metrics, while R? and A-20 are unitless scores
[48-52]. Amodel is considered to perform well when its MAE and RMSE
values are close to zero, and its R? and A-20 scores are close to one
[53-55]. Their respective formulas are shown in Equations (3)-(6).

N
> 0i—y)°
R=1-"1 3
; i —¥)°
1 N ~
MAE :ﬁZizl Yi — Vi 4
RMSE = (5)
A — 20 index = NTZO (6)

where N is the number of samples, N20 is the number of samples where
the predicted to actual value ratio is inside the range of 0.8-1.20, y; is
the actual UCS, y; is the predicted UCS, and y; is the mean of the UCS
values.

2.6. SHAP analysis

Although non-linear ML models perform well on tabular regression
tasks, they lack interpretability [56]. This issue is particularly relevant
for the models used in this study—boosting trees and transformer-based
architectures—as their complex internal structures make it difficult to
understand how predictions are made. However, the SHAP analysis, as
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an effective tool for interpreting ML models, can be used to unearth the
importance of each input feature as well as their impact on model pre-
dictions [57]. SHAP analysis adapts the game theory concept by treating
the prediction process as a collaborative game, where each input feature
is treated as player and the model’s output represents the game’s result
[58]. The method quantifies the impact of each input by examining the
change in predictions when the feature is included versus when it is
excluded, across all possible combinations of input features [58]. By
aggregating these differences, SHAP assigns a value—known as the
SHAP value—that reflects the individual influence of each feature on the
model’s prediction [58].

2.7. Multi-objective optimization

Although the advantages of using mine tailings as SCMs in cemen-
titious mixtures are well recognized, it is essential to explore the trade-
offs involved—particularly in balancing the UCS, cost, and emis-
sions—to identify optimal mixture designs. To address this, the current
study formulates two MOO problems, denoted as: F»(q) and F5(q), which
are explained comprehensively in section 2.7.1.

2.7.1. Definitions of the objective functions

This study examined both bi-objective and tri-objective optimiza-
tions, as separate problems. The bi-objective optimization (.e.,
improving UCS and reducing the cost) problem is formulated as shown
in Equation (7).

min Fy(q) =[ - f1(c, ¢, 28),f2(q) | @)

For tri-objective optimization, Equation (7) can be extended to
include emissions reduction as an additional objective. This is shown in
Equation (8).

min F5(q) = [ - fi(c,q, 28),£2(q).f3(q) ] (®)

where fi (c, g, 28) represents the optimal ML model used to forecast the
UCS at 28 days, and f»(q) and f3(q) denote the linear functions used to
calculate the total material cost and total emissions (as carbon dioxide
equivalent (CO; eq.)) of the mixtures, respectively. The UCS prediction
model is expressed as a negative function to align with the minimization
framework of the MOO problem. Here, c and g are arrays of input fea-
tures used in the ML model, where c represents the features held con-
stant and q represents the features that are varied during the
optimization process. These arrays are further expressed using Equa-
tions (9) and (10).

¢ = (OPCgsp, OPCcq0, OPCsio, , OPCyi,0,, MTssa, MTsio, , MT a0, ) )

q = (Qorc, Qur, Qw, Qra, Qca, Qsp) (10)

In this formulation, OPCssy and MTss, represent the specific surface
areas of OPC and mine tailings, respectively, whereas the terms
OPCq0, OPCsio, , OPCat0,, MTsi0,, MT a0, denote the respective oxide
compositions of OPC and mine tailings. Moreover, the terms Qopc,
Qur, Qw, Qra, Qca, Qsp represent the masses (in kg) of OPC, mine tailings,
water, fine aggregates, coarse aggregates, and superplasticizer, respec-
tively, used per one cubic meter of the cementitious mixture. It is
important to highlight that the features held constant (array c) do not
possess practical significance when treated as optimization variables.
For instance, although the optimization algorithm could theoretically
identify an optimal chemical composition of tailings, such a result lacks
practical relevance since tailoring tailings with a specific composition is
infeasible. Therefore, only the material proportioning variables in array
q are used in the optimization process. The values in array c are kept
constant for a selected study based on the specific types of OPC and mine
tailings used. However, if the type of OPC or tailings changes in a
different study, the corresponding c values must also be updated
accordingly.
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The functions for total material cost f2(q) and emissions (CO3 eq.)
f3(q) are defined using Equation (11) and Equation (12), respectively.

£2(q) = CorcQopc + CurQur + CwQw + CraQra + CcaQca + CspQsp  (11)
f3(q) =EopcQorc + EmrQur + EwQw + EpaQra + EcaQca + EspQsp (12)

where set of coefficients Copc, Cur, Cw, Cra,Cca,Csp and Eopc, Eur,
E,,Epp,Eca,Esp are the unit material costs (US$/per kg) and unit
emissions (kg CO; eq./per kg) of OPC, mine tailings, water, fine ag-
gregates, coarse aggregates, and superplasticizer, respectively. It is
important to select appropriate coefficient values based on the
geographical and economic context of a selected study. This flexibility
ensures that the proposed MOO framework remains applicable and
adaptable across different regions and case studies.

2.7.2. Constraints

Constraints play a crucial role formulating a MOO study by ensuring
the generated results are both practical and feasible for real-world
implementation [2]. This study considered both range and ratio con-
straints, which are represented mathematically according to Equation
(13).

Cmin < Ci < Cmax (13)

where C; denotes a selected input feature or ratio, and Cpn, and Cpgy
represent its lower and upper bounds, respectively. Range constraints
were applied to all variables in array q thereby restricting the optimi-
zation process to values within experimentally validated limits. Addi-
tionally, ratio constraints—water-to-cement ratio, fine aggregate-to-
cement ratio, and coarse aggregate-to-cement ratio—were also
imposed. By applying these constraints, the optimization respects
established relationships between material proportions and perfor-
mance characteristics, thereby helping ensure that the predicted mix-
tures are both constructible and reliable. In this study, a case study was
performed to explore the effectiveness of intelligent design in solving the
formulated MOO problem. Comprehensive details on the selection of
values for arrays c and g, along with the calculations of associated co-
efficients and constraints, are provided in Appendix A.

2.7.3. NSGA-II algorithm

The NSGA-II algorithm utilizes a combined approach that integrates
two key concepts: non-dominated sorting and genetic operations. In the
context of MOO, a solution is said to dominate another if it performs at
least equally across all objectives and outperforms in one or more of
them [59]. Based on this principle, the algorithm identifies a pareto
front composed of solutions that are non-dominated with respect to each
other, yet dominate all other solutions in the population [7]. Subsequent
fronts are formed by removing the previous front and repeating the
dominance evaluation on the remaining solutions [59]. To evolve the
population toward better solutions, NSGA-II applies genetic mecha-
nisms, including selection, crossover, and mutation [59]. Crossover uses
predecessor solutions (parents) and join them to find new solutions
(children), exploring the search domain. Mutation modifies these solu-
tions marginally to further exploit better performing regions [7]. This
process is repeated iteratively, and after each generation, both parent
and children solutions are considered together and sorted using
non-dominated sorting and a crowding distance metric [7]. The best
individuals are then selected for the next generation. This cycle repeats
until a pre-determined number of steps or a specific convergence sce-
nario is attained.

3. Results and discussion
3.1. Calibration and performance evaluation of ML models

Unlike the TabPFN model, the conventional tree-based boosting
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models selected in this study require proper calibration of hyper-
parameters to achieve optimal performance [57]. To accomplish this,
the Optuna framework was employed to tune key hyperparameters for
each boosting model. Table 3 the optimal hyperparameter combinations
that minimizes the average RMSE of model predictions when using
Optuna.

In the next step, the base and tuned boosting models, along with the
TabPFN model, were evaluated on the whole training dataset as well as
on the unseen testing dataset to determine the most successful ML
model. Table 4 lists the performance of base models on both training and
testing datasets, whereas Table 5 summaries the results of tuned models
and the TabPFN with their respective computational times. In these base
models, default hyperparameters assigned by scikit-learn python pack-
age are used, which are different from the values listed in Table 3 for
tuned models.

Based on the results, the base GBR model performs well on the
training data yet shows a significant drop in prediction accuracy on the
testing portion, as indicated by a 66.3 % increase in RMSE and a 61.1 %
increase in MAE. Similarly, the R? and A-20 scores decrease by 3.5 % and
6.8 %, respectively, further indicating reduced performance on unseen
data. This performance drop can be attributed to the use of default
hyperparameters, which are not tuned for the specific particularities of
the dataset [57]. As a result, the GBR model likely overfits the training
data and lacks generalization. XGBR and LGBR base models follow the
same undesirable pattern, highlighting the importance of calibrating the
ML models.

Compared with the performance of base models on testing data, the
tuned models achieved lower prediction errors, despite some overfitting
still being present. For example, the tuned GBR model reduced RMSE
and MAE by 30 % and 31.1 %, respectively, while R? and A-20 scores
improved by 3.1 % and 5.6 %, respectively. Similarly, the other tuned
boosting models—XGBR and LGBR—also outperformed their base
counterparts by achieving lower errors and improved R? and A-20 scores
on the testing data. Accordingly, while tuning did not fully eliminate
overfitting (i.e., due to the limitation of data), it led to boosting models
that generalize more effectively to unseen data. Among the tuned
boosting models, the GBR model achieved the best overall performance,
attaining the smallest RMSE (2.166 MPa) and MAE (1.573 MPa), as well
as the highest R? (0.972) and A-20 (0.963) scores on the testing data.
The TabPFN model slightly outperformed even the best tuned boosting
model (GBR) in terms of prediction accuracy, achieving a lower RMSE

Table 3
Optimal hyperparameters of boosting models.

ML Model Hyperparameter Optimal Value

GBR Learning rate 0.1675
Max depth 3
Min samples split 4
Min samples leaf 6
Subsample 0.8405
N estimators 709

XGBR Learning rate 0.4775
Max depth 4
Min child weight 3.3387
Subsample 0.6647
Colsample by tree 0.7669
N estimators 956
Reg alpha 0.6095
Reg lambda 172

LGBR Learning rate 0.1701
Max depth 5
Num leaves 29
Min data leaf 17
Feature fraction 0.8710
Bagging fraction 0.7440
Bagging frequency 2
N estimators 902
Reg alpha 0.8860
Reg lambda 16.8168
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Table 4
Performance of base ML models.
Model Dataset RMSE (MPa) R? MAE (MPa) A-20
GBR Training 1.861 0.977 1.418 0.978
Testing 3.095 0.943 2.285 0.912
XGBR Training 0.155 1.000 0.080 1.000
Testing 2.829 0.953 2.049 0.925
LGBR Training 1.682 0.981 1.256 0.987
Testing 2.939 0.949 2.126 0.938
Table 5
Performance of tuned ML models.
Model Computational Dataset RMSE R? MAE A-20
time (s) (MPa) (MPa)
GBR 1052 Training 0.642 0.997 0.486 0.997
Tuned Testing 2.166 0.972 1573 0.963
XGBR 600 Training 0.812 0.996 0.578 0.997
Tuned Testing 2.176 0.972 1.652 0.950
LGBR 176 Training 0.914 0.994 0.672 0.997
Tuned Testing 2.288 0.969 1.689 0.963
TabPFN 7 Training 0.917 0.994 0.661 1.000

Testing 2.115 0.973 1.440 0.963

(2.115 MPa) and MAE (1.440 MPa), along with a marginally higher R?
(0.973) and the same A-20 (0.963). The superior performance of
TabPFN can be attributed to its architecture, which leverages Bayesian
inference over multiple hypotheses, weighting each by how well it fits
the training data [10]. In addition, unlike conventional models trained
only on task-specific data, TabPFN is pretrained on millions of synthetic
datasets, giving it prior knowledge for similar prediction tasks [11].
Moreover, its two-way attention mechanism captures complex feature
interactions that tree-based models often miss, as these models combine
features sequentially rather than simultaneously [43]. These charac-
teristics enable TabPFN to typically outperform conventional boosting
models, especially when data are limited. Although TabPFN out-
performs other models, its performance on testing data still falls short of
that on the training data. This is because the model has access to the true
labels in the training set, which allows it to be well-conditioned for those
points. However, due to the data limitations, TabPFN may not fully
capture the complete context, leading to slightly lower performance on
unseen data. In addition to its superior predictive performance, the
TabPFN model did not require training or hyperparameter tuning, tak-
ing only 7 s for internal data preprocessing. This represents a substantial
improvement in computational efficiency compared to the 1052 s
required by the tuned GBR model for hyperparameter optimization and
training. The speed advantage of TabPFN is due to its architecture as a
pre-trained transformer model, which eliminates model training and
tuning requirements on new datasets [10].

Fig. 3 shows the agreement between the true and estimated values
for both base ((a), (c), (e)) and tuned boosting models ((b), (d), (f)) as
well as the TabPFN model (g). The visualizations further confirm the
impact of tuning, as fewer testing data points (i.e., red points) fall
outside the +20 % error bounds in the tuned models compared to their
base counterparts. Furthermore, in the TabPFN plot, most testing data
are closely located with the X = Y line, denoting superior predictive
performance over all the tuned boosting models. Similar trends are
evident in Fig. 4, which presents the regression error characteristic
(REC) curves. These plots show the percentage of predictions (i.e., ac-
curacy in y-axis) falling within a given error tolerance (i.e., residual
error in x-axis). The ideal model line, representing perfect prediction
accuracy, reaches 100 % at zero error. In Fig. 4 (a), the tuned boosting
models outperform TabPFN on the training data, as their curves lie
closer to the ideal model line, indicating a higher proportion of accurate
predictions at lower error thresholds. Conversely, in Fig. 4 (b), TabPFN
demonstrates the best performance on the testing data, with a steeply
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rising curve (i.e., closest to the ideal model), suggesting that most of its
predictions fall within a small error range. These results further confirm
the TabPFN model’s strong generalization capability than the conven-
tional boosting models, producing more accurate predictions on unseen
data. Given its superior predictive performance and significantly lower
computational time, the TabPFN model was selected as the most suitable
ML model for estimating the UCS of cementitious mixtures examined in
this study.

3.2. Explanation of the TabPFN model

The SHAP analysis was employed to explain the best ML model,
TabPFN, to ensure its results are transparent and trustworthy. Fig. 5
depicts the order of input features based on their significance for model
predictions. The x-axis of the plot shows the mean absolute SHAP values,
while the y-axis represents input features used in the ML model. Based
on the results, curing time stands out as the most important feature for
model’s output, UCS of the mixtures. This is likely due to the strong
dependence of UCS on the quantity of hydration products, which varies
significantly with the duration of the curing period [60]. Following
curing time, the proportions of water and OPC in the mixture ranked
next in importance, with values of 5.22 and 5.20, respectively. This can
be explained by the critical role both components play in the hydration
process. OPC serves as the primary binding agent that holds the other
materials—such as aggregates and additives—together, while water
activates the chemical reaction with OPC [61]. The CaO content in OPC
ranks next in importance, highlighting the influence of OPC composition
on the strength development of cementitious mixtures. CaO is directly
associated with the key clinker phases—tricalcium silicate (C3S) and
dicalcium silicate (C2S)—which govern the formation of calcium silicate
hydrate (C-S-H) gels, the primary hydration product responsible for
strength [62]. This highlights the TabPFN model’s capability to differ-
entiate between OPC varieties used across studies and to adjust its UCS
predictions accordingly. Another key component, the amount of fine
aggregates, received the next highest importance score of 1.25. This
result is consistent with their known role in reducing porosity by filling
voids within the mixture, which in turn contributes to improved UCS
[62]. Following fine aggregates, the amount of mine tailings was ranked
next in importance. In the referenced studies, mine tailings were pri-
marily utilized as a partial substitution for OPC, serving as a SCM. When
reactive, mine tailings can interact with Ca(OH), to form additional
hydration products, such as calcium aluminate silicate hydrate
(C-A-S-H) gels [16]. These products can contribute to improving the
UCS of the mixtures [16]. However, the contribution of OPC to hydra-
tion and strength development is significantly greater, which explains
why the importance of the mine tailings feature is ranked lower than
that of OPC [16]. The next most important features are associated with
the chemical and physical properties of mine tailings. The SiO, and
Al,O3 contents directly influence the formation of C-A-S-H gels, while
the SSA of the tailings is linked to their reactivity [63]. The higher
importance ranking of SiO, compared to Al,Os is likely due to the pre-
dominantly silicate nature (i.e., higher percentage of SiO3) of most mine
tailings [63].

The remaining features considered by the TabPFN model—namely
the SiO, and Al;O3 contents of OPC, the SSA of OPC, superplasticizer
content, and coarse aggregates—received the lowest importance scores,
which are collectively represented in the plot. In the case of OPC, the
SiO5 and Al;O3 contents are lower compared to CaO and exhibit limited
variability across different samples. Similarly, OPC is a standardized
material, and its SSA tends to remain relatively consistent, contributing
to the lower importance of these features. In contrast, the SSA of mine
tailings shows considerable variation, especially in studies where me-
chanical activation was applied [30,19], likely explaining its higher
importance ranking relative to OPC SSA. The contribution of super-
plasticizer to UCS is also minimal, which aligns with findings from
previous studies [57]. Lastly, the coarse aggregate content was ranked
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Fig. 5. TabPFN model feature importance analysis for UCS prediction.

lowest, primarily because the majority of the datasets in this study
involved mortar mixtures, in which coarse aggregates were not used (i.
e., their value was zero).

In contrast to the feature importance plot, the impact analysis shown
in Fig. 6 provides extensive information about each input feature’s
relationship with the output. In this plot, a SHAP value of zero repre-
sents the mean UCS prediction made by the TabPFN model. Each dot
symbolizes a unique data point, with its position on the x-axis indicating
its SHAP value—that is, the contribution of that feature to the predic-
tion. The color of each dot corresponds to the feature’s actual value,
based on the gradient bar: red indicates higher feature values, while blue
represents lower values. Curing time has a positive contribution to UCS,
as indicated by the red data points (i.e., higher curing times) being
associated with positive SHAP values. This aligns with existing litera-
ture, which shows that longer curing durations result in more hydration
products, thereby enhancing the strength of the mixture [61]. Next, the
contents of water and OPC show negative and positive correlations with
UCS, respectively, which is consistent with experimental findings. High
water content tends to lower the strength of cementitious mixtures by
increasing porosity, as the excess water evaporates and leaves behind
voids upon drying [2]. In contrast, mixtures with higher OPC content
typically generate more C-S-H gels as hydration products, leading to
increased strength [62]. The relationship between CaO content in OPC
and UCS is complex. While higher CaO levels generally promote

10

early-age strength development through accelerated hydration and
greater C-S-H formation, excessive CaO—especially when not effec-
tively utilized in pozzolanic reactions—can lead to a buildup of
unreacted Ca(OH),. This may negatively affect long-term strength and
microstructural integrity [20]. The UCS exhibits a negative response to
excessive fine aggregate content in the mixture. This can be ascribed to
the reduced amount of OPC per unit volume, which limits the formation
of hydration products and weakens the bonding between particles [62].
Literature suggests that excessive replacement of OPC with mine tailings
can reduce the availability of Ca(OH), due to cement dilution [16].
Although higher amounts of mine tailings introduce additional silica
and alumina into the mixture, the limited presence of reactive Ca(OH),
hinders pozzolanic reactions and hydration products, ultimately leading
to a decrease in UCS [16]. The trend observed for mine tailings in Fig. 6
aligns with these findings in the literature, as red data
points—representing higher tailings content—are associated with
negative SHAP values. The trends for SiO5 and Al,O3 contents in mine
tailings further support the reliability of the TabPFN model, as they
confirm observations from literature. Although tailings with higher Si
and Al are typically crystalline and less reactive, mechanical activation
can alter their crystalline structure, making them more reactive [31].
Under such conditions, tailings with higher Si and Al contents can
release more reactive ions into the matrix, promoting the formation of
additional C-A-S-H gels as secondary hydration products [16]. The
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Fig. 6. Feature impact analysis for UCS prediction based on SHAP values from the TabPFN model.

observation in this study is consistent with these findings because the
dataset is dominated by mechanically activated tailings, whose
enhanced reactivity explains the positive relationship between higher Si
and Al contents and improved strength. Likewise, the trend for SSA of
mine tailings is consistent with literature, showing that increased SSA
enhances reactivity, leading to higher UCS through the generation of
more hydration products [16]. For OPC, the trends observed for SiO2
and Al;O3 contents, as well as SSA, mirror those of mine tailings and
show strong agreement with experimental evidence [61]. The plot for
superplasticizer content indicates that increasing its dosage leads to
improved UCS. This is likely due to the superplasticizer’s ability to
effectively disperse cement particles, promoting faster and more com-
plete hydration reactions [18]. Lastly, coarse aggregate content shows a
positive correlation with UCS, which can be attributed to the inclusion
of concrete samples in the dataset. These samples generally exhibit
higher strength compared to mortar mixtures, which lack coarse ag-
gregates. Overall, the SHAP analysis reinforces the reliability of the
TabPFN model, as the feature impact trends closely align with estab-
lished findings in the literature, providing interpretable and consistent
explanations for the model’s predictions.

3.3. Multi-objective mixture design optimization

This section presents the results of the two separate multi-objective
optimization analyses—bi-objective and tri-objective—conducted on
the selected case study described in Appendix A.

3.3.1. Bi-objective optimization results

Fig. 7 illustrates the results of bi-objective optimization considering
the cost and the UCS of different cementitious mixtures at 28 days. In the
scatter plot, experimental designs and pareto-optimal solutions (i.e.,
pareto front) are represented by purple and orange points, respectively.
The distribution reveals two distinct groups among the experimental
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Fig. 7. Pareto front and experimental designs of the bi-objective optimiza-
tion problem.

designs: one characterized by lower UCS and cost, and the other asso-
ciated with higher UCS and cost. Compared to the first group, the higher
UCS designs incorporate increased aggregate content (e.g., from 684 kg/
m® to 725 kg/m%), which enhances strength but also leads to higher
overall mixture costs. Additionally, within each group, variations in UCS
and cost can be attributed to differences in tailings content (ranging
from 20 kg/m? to 60 kg/m?). Since tailings are less expensive than OPC,
mixtures with higher tailings content tend to be more cost-effective.
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Fig. 7 shows the pareto front consisting of 100 unique, non-
dominated optimal solutions. In each case, improving one objective
would lead to a decline in the other, highlighting the trade-offs involved
in the optimization process. Appendix B presents a detailed summary of
these solutions, including the optimal proportions of each constituent
material along with their corresponding UCS and cost values. As indi-
cated by the results, the pareto-optimal solutions offer improved trade-
offs between the two objectives, identifying mixture designs that either
achieved higher UCS or reduced cost more effectively than the experi-
mental designs. For example, point D on the pareto front (48.7 MPa, US$
30.8/m>) demonstrates that the cost can be reduced by US$ 4.7/m?>
compared to the experimental design at point C (48.6 MPa, US$ 35.5/
m®), while maintaining a nearly identical UCS through a different
mixture composition. Likewise, the comparison between points A (34.6
MPa, US$ 29.5/m>) and B (45.4 MPa, US$ 29.3/m?) reveals that for a
similar expenditure, the UCS of the mixtures can be significantly
improved by 10.8 MPa. Furthermore, the well-distributed pareto front
provides the flexibility to select an optimal mixture design based on
specific engineering requirements, with each solution offering a guar-
anteed improvement over the experimental designs in at least one
objective. This approach ultimately addresses the challenge of identi-
fying the optimal proportions of mine tailings to replace OPC, along with
the appropriate quantities of other constituent materials, aiming to
reduce the overall cost of the mixtures without compromising their
mechanical performance.

3.3.2. Tri-objective optimization results

Fig. 8 shows the results for extended analysis from the bi-objective
problem, which considers an additional objective: emissions, alongside
cost and UCS. Each scatter point represents a solution defined by its UCS,
cost, and emissions values plotted along the x, y, and z axes, respec-
tively. The experimental designs are represented by blue scatter points,
whereas red points represent 100 unique pareto optimal solutions. These
solutions are summarized in Appendix C. The differences in the z-axis
(emissions) values among the points can be attributed to the varying
OPC replacement ratios with mine tailings, as well as the substantial
disparity in emission factors between OPC and mine tailings (0.919 kg/
m® and 0.16424 kg/m?3, respectively). Unlike the bi-objective case where
the pareto front appears as a 2D curve, the tri-objective pareto front can
be visualized as a surface distributed across a 3D space.

The pareto front from the tri-objective optimization aligns with the
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Fig. 8. Pareto front and experimental designs of the tri-objective optimiza-
tion problem.
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results of the previous bi-objective analysis, consistently outperforming
the experimental designs with improved mixture compositions. These
optimized solutions achieve better trade-offs by enhancing at least one
of the objectives. For instance, compared to the experimental design at
point A (37.2, 31.6, 383), the pareto-optimal solution at point B (45.4,
29.3, 349.5) achieves a substantial reduction in both emissions (by 33.5
kg CO; eq./m®) and cost (by US$ 2.3/m%), while also improving UCS by
8.2 MPa. Similarly, the comparison between points C (experimental)
and D (pareto) reveals marginal improvement in UCS by 0.7 MPa, along
with reductions in cost and emissions by US$ 0.6,/m?> and 8.9 kg CO, eq./
m>, respectively. Although the cost and emissions savings may appear
marginal per unit volume of mixture, their impact becomes significantly
more substantial when considered in the context of real-world con-
struction projects which use large volumes of concrete. Overall, the re-
sults from both bi-objective and tri-objective optimization demonstrate
the effectiveness of the combined TabPFN and NSGA-II approach in
guiding the mixture design of mine tailings-based cementitious mate-
rials. The generated pareto fronts provide engineers with a valuable
decision-making tool to select optimal mixture designs that meet specific
performance, cost, and emission targets. Importantly, the multi-
objective optimization framework is adaptable to different regional
contexts by updating cost and emissions coefficients, as well as modi-
fying relevant constraints, making it broadly applicable across diverse
construction settings.

3.4. GreenMix AI: a software tool

The newly developed software tool, GreenMix Al, provides user-
friendly access to the ML models and optimization algorithms devel-
oped in this study. It features three main functions: (1) updating the
existing model with new data, (2) predicting the UCS of mixture designs,
and (3) performing multi-objective optimization. Each function is
organized into a dedicated tab within the software interface for ease of
use.

Fig. 9 shows a snapshot of the first tab, which enables users to update
the current TabPFN model with new data. Section (a) displays the
available tabs, allowing easy navigation between different functional-
ities. When new experimental data—such as that obtained from a
different type of mine tailings—is available, users can upload it using
button (b), which opens a file dialog to select a locally stored file in
comma separate values (CSV) format. Button (c) initiates data valida-
tion, checking for missing values and verifying that the input features
match the required format. Once the data is validated, button (d) trig-
gers the update process, retraining the TabPFN model with the new data
and saving the updated model for future use. A dedicated notifications
area provides real-time feedback, guiding users through each step and
alerting them to any issues encountered.

Fig. 10 illustrates the second tab of the GreenMix Al software, which
allows users to predict the UCS of a specific mixture design. In section
(a), users are required to input all necessary parameters related to the
mixture. Once the inputs are provided, the prediction can be initiated by
clicking button (b), which triggers the trained ML model embedded in
the backend of the software. The predicted strength is then displayed in
the output box (c), with additional guidance provided through prompt
messages displayed below the output area.

Fig. 11 presents the third and final tab of the GreenMix Al software,
which enables users to perform MOO of mixture designs. In the backend,
the software formulates the optimization problems based on the meth-
odology described in section 2.7.1. In area (a) in Fig. 11, users can
choose between bi-objective and tri-objective optimization modes using
radio buttons. Section (b) guides users through a step-by-step input
process, where they provide all necessary information, including values
for constant variables, cost and emissions coefficients, range constraints,
and ratio constraints. Section (c) allows users to specify optimization
parameters (e.g., population size, number of generations), and the
optimization process is initiated by clicking button (d). Once executed,
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Fig. 9. GreenMix Al Table 1 for data input.

the algorithm runs in the background, and the optimized mixture de-
signs are saved as an Excel (.xIsx) file locally on the user’s computer. To
enhance user experience, the software provides real-time notifications to
flag issues such as missing values or illogical inputs (e.g., upper bounds
being smaller than lower bounds), and to suggest corrective actions or
next steps. Additionally, a continuously updated progress bar displays
the optimization status, offering users a clear view of ongoing compu-
tational progress.

GreenMix Al enables easy customization, allowing users to tailor
their own MOO studies based on different types of mine tailings and
OPC, experimental conditions, and cost and emissions data (i.e., changes
depending on the regional and transport-specific factors)—simply by
modifying input values within the program. This flexibility makes the
software a universally applicable tool, with the potential to significantly
advance sustainable and economically resilient practices in the con-
struction industry globally.

4. Research limitations and recommendations for future studies

Although the dataset used in this study is significantly larger and
more diverse than those found in the literature, continuously updating
the dataset remains important to further enhance model performance.
Furthermore, incorporating additional input features—such as curing
time, humidity level, cement mixing parameters (e.g., duration and
speed) and UCS testing conditions (e.g., loading rate and sample size)—
could enhance the robustness of the current model. The TabPFN model is
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particularly well-suited for this, as it requires minimal adjustments
when new data are added—unlike many traditional models that require
extensive re-tuning. The developed software tool, GreenMix Al, further
streamlines this process, allowing users with minimal coding experience
to easily update the model through a simple, user-friendly interface. In
the future, concepts such as federated learning could be integrated into
the software, enabling collaborative training of the TabPFN model
across multiple users or institutions without directly sharing raw data-
—thereby preserving data privacy. In addition, as transformer-based
pre-trained models continue to evolve, it will be important to compare
the performance of newer models against TabPFN as they become
available. This will help ensure that the most accurate and efficient tools
are used for future applications. Beyond the potential technical im-
provements to GreenMix Al, an important research direction will be the
evaluation of its usability. Future work will involve assessing the soft-
ware with end-users to examine its practicality, user-friendliness, and
ability to integrate into real-world workflows.

Additionally, this study employed only the NSGA-II algorithm for the
MOO case study. Future work should explore other MOO algorithms,
such as multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [64] and NSGA-III [65], to evaluate their applicability and
compare results. In addition to the above limitations, the authors
acknowledge the absence of experimental validation for the optimized
mixture designs. While the data-driven results obtained in this study are
promising, confirming their reliability through dedicated laboratory
experiments is essential. Future work will therefore focus on conducting
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Fig. 10. GreenMix Al Table 2 for performance prediction.

such experiments to validate the optimized designs. Finally, while this
study focused solely on UCS as the primary objective, other critical
performance indicators—such as setting time, workability (flow), and
tensile strength—can also be considered as additional objectives,
depending on specific design requirements.

5. Conclusion

This research introduces a new data-driven intelligent design that
applies machine learning (ML) techniques to the multi-objective opti-
mization (MOO) of cementitious mixtures incorporating mine tailings as
supplementary cementitious materials (SCMs). A transformer-based
tabular prior data fitted network (TabPFN) model—shown to outper-
form conventional boosting ML models—was used to predict uniaxial
compressive strength (UCS) and further interpreted using SHapley Ad-
ditive exPlanations (SHAP). In the MOO case study, the TabPFN model
was integrated with cost and emissions objectives to optimize the
mixture design. The following conclusions can be reached based on the
findings of this study.

1. The Optuna framework effectively optimized the hyperparameters of
the selected boosting ML models, resulting in enhanced performance
over their respective baseline versions, with some models achieving
up to a 30 % reduction in UCS prediction errors on the testing data.
Among all models evaluated, the transformer-based TabPFN model
exhibited the best overall performance, outperforming even the top-
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tuned boosting models. Importantly, the TabPFN model required no
model-specific training or hyperparameter tuning, significantly
reducing computational time by 1045 s. Given its predictive accu-
racy, computational efficiency, and adaptability, TabPFN is partic-
ularly well-suited for regression tasks involving small, literature-
based datasets that are frequently updated.

. SHAP analysis identified curing time as the most prominent input in

the TabPFN model, followed by key constituent materials such as
water, OPC, fine aggregates, and mine tailings. The results empha-
sized the importance of controlling water content, aggregate pro-
portions, and the OPC replacement ratio with mine tailings, as each
showed a strong relationship with UCS. Additionally, the analysis
revealed that the reactivity of mine tailings—reflected by their spe-
cific surface area—plays a critical role in strength development.
Tailings with higher SiO, and Al;O3 contents were also associated
with greater strength gains, highlighting the need to select appro-
priate materials based on performance requirements. Overall, the
SHAP-derived model interpretations were aligned with experimental
evidence, reinforcing the model’s reliability and interpretability.
These insights provide engineers with practical guidance for
designing sustainable mixtures tailored to specific strength targets.

. The MOO case study demonstrated the critical value of optimizing

mine tailings based-mixture designs to achieve maximum benefits of
waste reutilization. All pareto-optimal solutions generated by the
TabPFN model, in combination with the non-dominated sorting ge-
netic algorithm-II (NSGA-II), outperformed the original experimental
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Fig. 11. GreenMix AI Table 3 for mixture design optimization.

designs in both bi-objective and tri-objective optimization scenarios.
These optimized solutions offer engineers a practical framework for
tailoring mixtures to meet specific performance requirements while
minimizing cost and environmental impact.

. The developed software tool, GreenMix Al serves as a critical bridge
between advanced research methodologies and practical imple-
mentation. It provides streamlined access to the ML models and MOO
algorithms developed in this study, without requiring users to have
expertise in coding, ML, or optimization. Through an intuitive
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interface, users can update the model with their own experimental
data, predict the UCS of new mixture designs, and perform custom-
ized optimization studies to identify designs that balance strength,
cost, and emissions. Overall, this research showcases the potential of
integrating ML and optimization techniques to promote the use of
mine tailings as SCMs, advancing both engineering efficiency and
sustainability in the mining industry.
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Appendix A
A.1. Cost and LCA data

In this study, a previously published experimental investigation from Egypt [21], which utilized marble tailings as SCMs, was used as the basis for
the case study formulation. This study was selected as it provides experimental results for a wide range of mixture conditions—such as varying
water-to-cement ratios, aggregate-to-cement ratios, and tailings contents—resulting in multiple data points. Accordingly, the coefficients used in
Equations (11) and (12) in the manuscript were determined based on values reported in the literature and supplemented with data from the Ecoinvent
database accessed through the OpenLCA software. These values are listed in Table A.1.

Table A.1
Values of cost and emission coefficients used in the case study

Material Cost coefficients (US$/kg) Emission coefficients (CO, eq./kg)
OPC Corc 0.0574 Eopc 0.919
Mine tailings Cur 0.0001 Eyr 0.16424
Water Cw 0.0001 E, 0.00122
Fine aggregates Cra 0.0038 Epp 0.01329
Coarse aggregates Cca 0.0057 Eca 0.01877
Superplasticizer Csp 1.2 Esp 1.67377

The cost coefficients for each material were derived from the latest available reports on the Statista online database, which provide average
construction material prices in Egypt. The cost of OPC was reported as US$ 2.87 per 50 kg sack, resulting in a unit price of approximately US$ 0.0574
per kg. The prices of fine and coarse aggregates were given as US$ 6.08/m> and US$ 10.49/m?, respectively. These values were converted to cost per
kg by assuming average bulk densities of 1600 kg/m? for fine aggregates and 1850 kg/m? for coarse aggregates. Similarly, the commercial rate for
water in Egypt, estimated at US$ 0.0001 per kilogram, was used to ensure consistency with data representative of an industrial-scale project.
Furthermore, commercial bulk pricing was considered for estimating the unit cost of polycarboxylate ether (PCE) superplasticizer (40 % active
substance), reflecting typical rates for large-scale procurement. Regarding mine tailings, a zero-burden approach was adopted, meaning the upstream
costs associated with mining, mineral processing, and tailings generation were excluded. It was assumed that marble tailings were dry and readily
available at the tailings storage facility (TSF), requiring no additional energy for drying. However, the transport costs were considered non-negligible,
and it was assumed that the TSF and the concrete mixing plant are located within 1.5 km distance, consistent with assumptions made by Zhou et al.
(2024) [66]. Finally, based on an average transport cost of US$ 0.066 per tonne per kilometer in Egypt and a distance of 1.5 km, the final cost of mine
tailings was estimated at US$ 0.001 per kg.

The emission coefficients presented in Table A.1 were derived using data from version 3.11 of the Ecoinvent database. For all constituent materials,
market activity processes were selected, because they account for emissions associated with the production of each material as well as transportation
from producers to consumers (i.e., averaged) within the selected region. Since Egypt is not explicitly represented in the database, the region labeled
rest of the world (RoW) was used for the analysis. All the life cycle impact analysis data were generated using the ReCiPe 2016 (v1.03), midpoint (H)
method. Consistent with the cost calculations, the emissions associated with mine tailings were based solely on transportation. Specifically, the market
process "freight lorry, 32-ton, EURO 6" from the Ecoinvent database was used, assuming a transport distance of 1.5 km. Emissions from upstream
processes were excluded in accordance with the zero-burden approach. It is important to emphasize the influence of transport distance, as studies have
shown that transporting materials over distances greater than 15 km can negate the environmental benefits of using more sustainable alternatives
[67]1. Therefore, the feasibility of utilizing mine tailings as SCMs in cementitious mixtures largely depends on the proximity of the TSF to the concrete
plant.

A.2. Constraints
Constraints play a crucial role in a MOO problem by ensuring that the generated solutions are both practical and feasible for real-world imple-

mentation. In this study, both range constraints and ratio constraints were applied, as shown in Table A.2 and Table A.3. These constraints were
derived from the mixture designs reported in the referenced case study on marble tailings [21]. It is important to note that the specific values of these
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constraints should be adjusted based on the mixture designs and requirements of other studies.

Table A.2
Range constraints
Lower bound (kg/m®) Upper bound (kg/m%)
OPC 340 380
Mine Tailings 20 60
Water 160 200
Fine aggregates 681 725
Coarse aggregates 1021 1087
Superplasticizer 1.1 5.9
Table A.3
Ratio constraints
Lower bound (kg/m®) Upper bound (kg/m®)
Water-to-cement ratio (W/C) 0.4 0.5
Fine aggregates-to-cement ratio (FA/C) 1.7025 1.8125
Coarse aggregate-to-cement ratio (CA/C) 2.565 2.705

Appendix B

Table B.1

Optimal mixture designs and their respective UCS and cost values identified by bi-objective optimization
OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m®)
372.90 31.09 162.03 690.09 1064.33 5.87 53.88 37.16
374.18 31.12 162.43 691.82 1065.76 5.88 53.90 37.26
373.22 31.19 161.97 688.60 1064.37 5.82 53.86 37.11
365.27 32.74 160.00 681.92 1025.16 4.08 52.52 34.32
352.95 32.80 160.03 681.79 1021.96 1.73 48.51 30.77
364.97 33.07 160.05 681.37 1066.77 5.20 53.37 35.88
360.49 33.18 160.01 681.08 1022.86 3.08 51.28 32.82
365.57 33.19 160.00 681.14 1064.26 3.92 52.57 34.36
365.57 33.20 160.00 681.14 1064.26 5.88 53.85 36.72
365.63 33.20 160.00 681.13 1031.69 5.88 53.77 36.53
365.69 33.21 160.00 681.11 1064.26 3.79 52.47 34.21
364.97 33.22 160.09 681.13 1024.58 5.70 53.57 36.24
365.91 33.22 160.08 681.08 1028.91 3.48 52.11 33.66
361.93 33.22 160.04 681.65 1029.37 1.93 49.88 31.57
360.40 33.24 160.00 681.09 1022.88 1.46 48.79 30.88
360.46 33.24 160.08 681.09 1022.88 1.41 48.71 30.82
361.93 33.25 160.04 681.65 1029.37 1.93 49.92 31.57
364.93 33.25 160.04 681.08 1023.56 1.76 49.82 31.51
364.12 33.26 160.02 681.90 1022.86 4.88 52.95 35.20
363.42 33.26 160.02 681.75 1023.54 4.84 52.91 35.11
361.30 33.29 160.04 681.79 1030.96 5.30 53.18 35.59
361.67 33.34 160.07 681.00 1022.44 1.78 49.60 31.33
364.96 33.35 160.08 681.15 1028.91 3.48 52.04 33.60
364.96 33.35 160.00 681.15 1025.15 3.41 51.99 33.50
365.61 33.35 160.04 681.91 1025.13 4.94 53.12 35.37
363.42 33.41 160.03 681.75 1023.49 2.77 51.00 32.62
364.11 33.41 160.00 681.95 1025.13 2.44 50.60 32.28
363.36 33.41 160.04 681.26 1023.78 3.88 52.28 33.96
363.43 33.41 160.03 682.09 1024.52 3.43 51.91 33.43
364.48 33.41 160.04 681.02 1031.30 5.87 53.71 36.45
363.41 33.41 160.02 681.89 1030.88 3.93 52.38 34.07
363.38 33.47 160.04 681.62 1024.05 5.55 53.43 35.96
364.31 33.78 160.04 681.79 1023.27 1.61 49.50 31.28
364.95 33.85 160.04 681.26 1023.78 4.56 52.82 34.86
364.95 33.85 160.04 681.26 1023.78 4.67 52.88 34.99
363.37 33.85 160.09 681.78 1023.32 2.14 50.25 31.87
363.37 33.85 160.07 681.78 1023.23 2.19 50.33 31.92
364.86 33.86 160.07 687.14 1029.23 2.19 50.41 32.07
364.85 33.86 160.07 687.14 1029.24 2.19 50.41 32.06
364.22 33.86 160.02 681.02 1023.39 4.35 52.63 34.57
361.61 33.87 160.05 681.90 1029.08 2.48 50.58 32.20
365.58 33.89 160.03 681.75 1029.21 2.77 51.16 32.78

(continued on next page)
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Table B.1 (continued)

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m>)
364.12 33.89 160.00 681.90 1033.37 4.90 53.04 35.29
363.01 33.90 160.02 681.98 1022.59 1.38 48.89 30.94
351.24 33.94 160.03 681.79 1023.82 1.83 48.57 30.81
363.41 33.97 160.03 681.79 1022.73 2.73 50.93 32.57
364.96 33.98 160.09 681.24 1023.84 5.65 53.57 36.17
364.23 33.98 160.02 682.08 1034.31 3.62 52.15 33.75
351.24 33.98 160.02 681.80 1021.98 1.54 47.98 30.45
351.24 33.98 160.03 681.80 1029.07 1.72 48.39 30.70
350.55 33.98 160.04 681.80 1023.27 1.72 48.28 30.63
351.46 33.98 160.03 681.80 1029.18 1.69 48.36 30.68
364.22 33.98 160.02 682.08 1034.31 3.67 52.22 33.81
364.31 33.98 160.00 681.24 1023.50 3.08 51.52 33.05
364.24 33.98 160.04 681.62 1030.06 5.55 53.49 36.04
364.80 33.99 160.02 681.75 1029.21 2.52 50.81 32.44
364.10 33.99 160.02 681.75 1023.51 2.52 50.75 32.37
364.79 33.99 160.03 681.07 1025.19 2.62 50.92 32.53
364.25 33.99 160.04 681.75 1023.51 2.76 51.07 32.67
351.68 33.99 160.04 681.40 1022.40 1.59 48.14 30.53
364.79 33.99 160.02 681.12 1034.31 3.93 52.47 34.16
364.92 34.00 160.00 681.14 1024.59 5.78 53.65 36.32
365.06 34.03 160.03 681.33 1031.32 3.23 51.84 33.31
365.27 34.03 160.03 681.46 1031.32 3.23 51.87 33.33
364.27 34.04 160.04 681.87 1025.13 4.91 53.04 35.26
365.11 34.10 160.03 682.01 1027.32 4.43 52.75 34.74
360.46 34.39 160.02 681.79 1021.88 1.55 49.04 30.99
361.25 34.39 160.02 681.77 1022.49 1.55 49.16 31.03
349.23 34.40 160.02 681.77 1022.49 1.55 47.80 30.34
365.05 34.80 160.04 681.40 1025.69 5.20 53.31 35.65
363.12 34.87 160.04 681.46 1033.63 3.11 51.63 33.08
365.04 34.94 160.03 681.78 1066.03 1.72 50.00 31.70
363.15 34.95 160.00 681.95 1049.35 3.11 51.68 33.17
351.49 35.04 160.08 681.67 1022.38 1.57 48.08 30.50
362.61 35.05 160.05 681.13 1025.03 1.77 49.71 31.38
361.84 35.05 160.08 681.64 1021.64 1.59 49.26 31.11
363.06 35.07 160.00 682.11 1029.21 2.02 50.12 31.75
363.06 35.14 160.00 682.15 1029.21 2.02 50.15 31.75
343.19 39.01 160.02 681.65 1024.20 1.69 47.56 30.17
343.19 39.19 160.02 681.01 1024.20 1.69 47.53 30.17
341.31 39.21 160.03 681.12 1026.11 1.56 47.03 29.92
341.31 39.21 160.02 681.01 1024.40 1.54 46.99 29.88
341.31 39.21 160.03 681.59 1022.88 1.50 46.84 29.83
341.31 39.21 160.03 681.59 1022.88 1.52 46.89 29.85
341.94 39.23 160.02 681.77 1022.54 1.35 46.62 29.68
341.98 39.24 160.02 681.65 1022.42 1.69 47.37 30.09
340.39 39.32 160.04 682.09 1022.74 1.30 46.32 29.54
341.56 39.40 160.03 681.12 1026.11 1.61 47.17 30.00
340.77 39.61 160.09 681.66 1023.92 1.14 45.66 29.37
340.77 39.61 160.09 681.66 1023.92 1.71 47.26 30.06
340.92 39.61 160.09 681.12 1024.01 1.27 46.14 29.54
340.92 39.61 160.09 681.12 1022.76 1.27 46.11 29.53
340.84 39.66 160.04 681.56 1023.70 1.34 46.45 29.61
340.92 39.71 160.08 681.08 1022.81 1.24 46.01 29.49
351.55 39.73 160.02 681.98 1022.61 1.38 47.66 30.28
340.16 40.94 160.14 681.35 1022.68 1.20 45.72 29.41
340.56 41.01 160.03 681.38 1024.41 1.23 45.86 29.47
340.07 41.45 160.00 681.08 1022.82 1.10 45.43 29.28
341.98 41.78 160.03 681.31 1022.75 1.42 46.72 29.78
340.07 41.87 160.00 681.06 1025.09 1.13 45.48 29.33
Appendix C
Table C.1

Optimal mixture designs and their respective UCS, cost and emission values identified by tri-objective optimization

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m3) CO3 eq. (kg)
351.92 31.99 160.19 681.72 1029.30 3.87 51.27 33.32 363.72
363.82 32.81 160.13 681.80 1021.16 2.97 51.21 32.88 373.14
364.52 32.81 160.13 681.80 1023.54 2.99 51.31 32.96 373.86
364.62 32.81 160.13 681.80 1023.54 3.05 51.43 33.04 374.05
351.92 32.85 160.13 681.97 1023.50 2.99 50.16 32.24 362.29
349.38 33.11 160.01 681.64 1029.63 4.82 51.69 34.31 363.16

(continued on next page)
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Table C.1 (continued)

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m3) CO; eq. (kg)
349.57 33.11 160.01 681.64 1024.40 4.82 51.62 34.30 363.24
363.76 33.77 160.03 681.66 1024.44 2.17 50.33 31.93 371.95
363.35 33.78 160.04 681.67 1069.00 5.83 53.70 36.55 378.54
363.76 33.78 160.04 681.67 1069.00 5.86 53.76 36.62 378.97
361.31 34.64 160.03 681.67 1024.43 5.69 53.33 36.02 375.74
361.31 34.64 160.03 681.49 1022.06 5.04 52.80 35.23 374.61
361.23 34.65 160.04 681.52 1028.07 1.60 49.29 31.12 368.89
360.81 34.65 160.04 681.52 1028.39 4.45 52.53 34.52 373.28
364.59 34.67 160.04 681.68 1024.89 5.86 53.67 36.41 379.05
361.99 34.71 160.07 681.52 1065.94 1.68 49.70 31.48 370.44
364.10 34.72 160.03 681.68 1068.06 5.87 53.78 36.64 379.44
360.84 34.73 160.17 681.80 1024.29 2.04 49.95 31.61 369.22
363.35 34.74 160.13 681.57 1028.05 5.83 53.51 36.32 377.93
363.22 34.74 160.03 681.80 1029.75 1.76 49.76 31.44 371.03
345.32 34.76 160.03 681.52 1027.93 1.35 47.02 29.91 353.86
352.39 34.77 160.02 681.50 1024.59 4.52 51.82 34.11 365.61
363.32 34.79 160.13 681.62 1025.00 5.48 53.33 35.88 377.26
363.32 34.79 160.00 681.62 1025.00 5.65 53.44 36.09 377.55
345.94 34.80 160.02 681.63 1024.74 5.79 52.12 35.25 361.81
345.54 34.80 160.02 681.66 1023.89 5.79 52.03 35.23 361.43
343.59 34.80 160.08 682.06 1021.56 1.35 46.79 29.78 352.18
343.59 34.80 160.03 682.06 1021.52 1.41 46.92 29.85 352.27
361.60 34.81 160.03 681.66 1021.20 2.91 51.02 32.67 371.31
357.37 34.84 160.00 682.01 1021.52 1.76 49.01 31.05 365.52
344.13 34.84 160.03 682.01 1021.66 1.76 47.70 30.29 353.36
353.80 34.84 160.02 682.01 1021.32 4.88 52.16 34.60 367.46
349.28 34.90 160.03 682.08 1024.77 2.85 49.82 31.92 359.98
348.91 34.91 160.08 681.66 1024.44 3.33 50.58 32.48 360.45
360.96 34.98 160.02 681.66 1024.30 5.35 53.17 35.59 374.91
360.99 34.98 160.01 681.71 1070.16 5.87 53.52 36.48 376.67
360.48 34.98 160.01 681.71 1028.08 5.80 53.31 36.12 375.28
360.97 35.00 160.03 681.62 1024.55 1.41 48.80 30.86 368.32
357.00 35.12 160.03 681.65 1028.30 3.17 51.10 32.76 367.70
355.98 35.65 160.03 682.07 1024.89 1.55 48.51 30.75 364.09
363.15 35.65 160.04 681.63 1027.94 4.88 52.91 35.17 376.31
354.44 35.65 160.02 682.05 1025.45 5.49 52.69 35.39 369.29
343.47 35.65 160.04 681.63 1025.00 4.88 51.12 34.02 358.17
349.10 35.67 160.03 681.64 1024.89 4.41 51.44 33.78 362.55
342.46 35.97 160.13 681.69 1021.15 1.12 45.88 29.43 350.93
342.46 35.97 160.00 681.69 1021.15 1.36 46.72 29.72 351.32
361.68 36.02 160.03 681.49 1024.42 5.12 53.02 35.36 375.36
342.08 36.09 160.13 681.54 1021.15 2.88 49.19 31.52 353.53
356.00 36.09 160.04 682.07 1024.77 2.86 50.43 32.32 366.38
355.60 36.09 160.04 682.11 1023.93 2.86 50.39 32.30 366.00
349.10 36.12 160.04 681.68 1024.89 5.86 52.42 35.53 365.06
362.13 36.13 160.02 681.52 1064.45 5.25 53.25 35.77 376.75
361.59 36.19 160.08 681.49 1021.14 1.68 49.43 31.20 369.47
362.12 36.20 160.13 681.51 1029.55 2.03 50.09 31.70 370.71
344.74 36.21 160.13 681.49 1029.55 2.04 48.33 30.72 354.76
360.63 36.24 160.01 681.67 1024.53 1.36 48.66 30.78 368.14
343.39 36.25 160.03 681.47 1021.58 4.09 50.62 33.05 356.81
361.59 36.26 160.08 682.06 1024.55 3.34 51.65 33.21 372.34
346.37 36.27 160.02 681.71 1027.30 1.88 48.24 30.61 355.97
346.37 36.27 160.02 681.70 1027.30 1.67 47.87 30.35 355.60
349.66 36.30 160.00 681.68 1024.65 5.45 52.23 35.06 364.90
350.08 36.30 160.00 681.62 1024.65 4.46 51.54 33.90 363.64
345.59 36.37 160.04 682.04 1026.09 5.37 51.74 34.74 361.08
345.38 36.42 160.19 681.50 1021.14 1.59 47.48 30.16 354.47
357.45 36.42 161.39 682.00 1021.52 5.59 52.78 35.66 372.27
345.45 36.42 160.19 681.50 1021.14 1.80 47.92 30.42 354.88
349.69 36.60 160.00 681.97 1024.67 2.99 49.99 32.11 360.87
349.69 36.60 160.13 681.97 1024.67 2.99 50.02 32.11 360.87
343.20 36.77 160.08 681.48 1022.08 5.04 51.35 34.19 358.32
362.63 36.78 160.04 681.52 1029.03 5.83 53.51 36.29 377.63
362.63 36.78 160.03 681.51 1029.02 2.15 50.23 31.87 371.47
348.91 36.88 160.03 681.66 1024.44 2.18 48.89 31.09 358.84
357.60 36.88 160.03 681.67 1024.36 1.32 48.14 30.56 365.38
348.71 36.89 160.13 681.54 1026.38 4.55 51.50 33.94 362.66
345.13 36.89 160.03 681.50 1024.36 4.43 51.06 33.57 359.12
343.91 36.90 160.03 681.45 1024.36 5.82 51.86 35.17 360.33
345.70 36.91 160.03 681.66 1024.36 1.86 48.09 30.52 355.35
343.00 36.91 160.04 681.71 1024.39 1.55 47.23 30.00 352.36
345.27 36.95 160.03 681.66 1024.36 1.36 47.05 29.90 354.13
348.70 36.97 160.13 681.56 1026.38 2.09 48.76 30.99 358.55
343.69 37.00 160.00 682.00 1021.08 1.59 47.37 30.07 353.02
341.14 37.00 160.00 682.02 1021.34 1.14 45.78 29.38 349.91

(continued on next page)
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OPC Tailings Water Fine Aggregates Coarse Aggregates Sp UCS (MPa) Cost ($/m3) CO3 eq. (kg)
346.11 37.22 160.03 681.51 1021.07 1.80 48.03 30.46 355.63
361.51 37.49 160.03 682.01 1025.08 1.76 49.60 31.31 369.82
341.96 37.49 160.04 682.03 1021.33 4.45 50.77 33.40 356.30
340.54 37.49 160.04 681.71 1021.33 4.32 50.48 33.16 354.77
342.83 37.59 160.02 681.55 1028.30 4.44 50.91 33.48 357.23
341.14 40.67 160.02 681.49 1021.16 5.37 51.07 34.45 357.59
340.03 40.78 160.12 681.68 1021.15 1.10 45.42 29.27 349.45
340.67 40.78 160.12 681.68 1025.08 1.10 45.56 29.33 350.11
340.54 40.78 160.01 681.49 1028.56 1.26 46.02 29.54 350.33
342.02 40.78 160.01 681.49 1021.45 1.32 46.56 29.65 351.66
340.54 40.79 160.01 681.70 1028.56 1.27 46.06 29.54 350.34
342.02 40.79 160.01 681.70 1021.26 1.32 46.51 29.65 351.65
340.02 40.79 160.00 681.68 1028.55 1.12 45.52 29.33 349.61
340.54 40.79 160.01 681.70 1028.55 1.33 46.37 29.61 350.44
352.10 40.79 160.01 681.70 1023.64 1.31 47.51 30.23 360.94
343.32 40.83 160.04 682.04 1021.33 1.12 45.90 29.48 352.52
340.10 41.77 160.01 681.67 1025.00 1.32 46.25 29.56 350.12
341.40 41.79 160.08 682.06 1025.01 3.30 49.58 32.01 354.63

Data availability [17] C. Yun-hong, Y. Si-hui, Z. Jing-yu, S. Xiao-hui, Test research on hydration process

of cement-iron tailings powder composite cementitious materials, Powder Technol.
399 (2022) 117215.

Data will be made available on request. [18] A. Barzegar Ghazi, A. Jamshidi-Zanjani, H. Nejati, Utilization of copper mine
tailings as a partial substitute for cement in concrete construction, Constr. Build.
Mater. 317 (2022) 125921.
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