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A B S T R A C T

Realizing the full potential of incorporating mine tailings as supplementary cementitious materials (SCMs) to 
replace ordinary Portland cement (OPC) requires carefully balancing the benefits—such as cost reduction and 
emissions mitigation—while ensuring the mixtures achieve the required strength. Given the demonstrated 
effectiveness of combining machine learning (ML) with optimization algorithms in similar multi-objective 
optimization (MOO) problems, for the first time, this study employed a novel tabular prior data fitted 
network (TabPFN) model to forecast the uniaxial compressive strength (UCS) of those mix designs. The TabPFN 
model outperformed traditional boosting ML models, achieving an R2 of 0.973 and a low prediction error of 
2.115 MPa. Notably, its pre-trained architecture reduced computational time by 1045 s. Building on this, a MOO 
case study was developed using the TabPFN model to predict UCS as the first objective, alongside separate 
equations used as objective functions to calculate cost and total emissions. This MOO problem was tackled using 
the non-dominated sorting genetic algorithm-II (NSGA-II). The optimized mixture designs achieved better bal
ances between strength, cost, and emissions than those obtained through experimental methods, validating the 
use of this ML-based method for mixture design. Finally, a software tool—GreenMix AI—was developed to 
provide integrated access to the entire framework, translating advanced research into practical application. In 
essence, this research supports the reuse of mine tailings as SCMs and provides a practical pathway to developing 
more economical and sustainable cementitious mixtures.

1. Introduction

The reuse of mine tailings as supplementary cementitious materials 
(SCMs) to partially replace ordinary Portland cement (OPC) in cemen
titious mixtures has gained increasing attention in recent years. This 
strategy not only helps reduce tailings waste but also offers several key 
advantages. First, mine tailings can enhance strength by reacting with 
calcium hydroxide (Ca(OH)2), a by-product of OPC hydration, to form 
additional hydration products [1]. Second, as a waste material with no 
economic value, tailings help reduce overall mixture costs [2]. Third, 
tailings lower greenhouse gas (GHG) emissions under the zero-burden 
concept, which attributes impacts only to the extraction of valuable 
minerals, not to waste [3].

Although higher OPC replacement with mine tailings offers greater 

benefits, it can reduce mixture strength. This is because less OPC leads to 
lower formation of primary hydration products and Ca(OH)2, leaving 
much of the tailings unreacted and weakening the matrix [4]. This 
limitation has been documented in several studies. For example, Kara 
[5] reported a 15.7 % decrease in uniaxial compressive strength (UCS) 
when the copper tailings replacement level was increased from 10 % to 
15 %. Similarly, Ince [6] found that replacing more than 30 % of OPC 
with gold tailings led to a reduction in strength, despite notable im
provements in cost and emissions. These findings highlight the need to 
strike a careful balance among trade-offs—strength retention, cost 
reduction, and emissions mitigation. Traditionally, researchers have 
relied on experimental testing to handle this multi-objective optimiza
tion (MOO) problem. However, this process is time-consuming, expen
sive, and impractical for evaluating all possible mixture designs [2]. As a 
result, researchers often limit their studies to a narrow set of mixture 
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designs. For example, although Ince [6] examined OPC replacement 
ratios from 10 % to 40 %, tests were conducted only at 10 % intervals, 
leaving many intermediate ratios unexplored. Due to these limitations, it 
remains unclear whether better-performing designs could exist that offer 
improved trade-offs. Therefore, a more efficient and practical method is 
needed to identify optimal designs for these novel cementitious mixtures 
and to uncover their full potential.

Data-driven intelligent design approach, which combines machine 
learning (ML) and optimization algorithms, has emerged as a promising 
alternative for efficiently optimizing cementitious mixture designs. 
Unlike traditional experimental approaches, which are limited to testing 
a finite number of designs due to practicality, the intelligent design 
framework utilizes the patterns learned by ML models and applies them 
in optimization algorithms like the non-dominated sorting genetic al
gorithm II (NSGA-II) [7] to explore a broader space of potential mix
tures. Such approaches have revealed a vast number of superior designs 
not tested experimentally. For example, Cao et al. [8] applied a com
bined ML and optimization approach, identifying 165 alternative 
optimal mixture designs. In this study, one selected design—with a 26 % 
replacement of OPC using waste slag—achieved a cost reduction of 
31.64 Chinese Yuan and a decrease in GHG emissions of 31.04 kg per 
cubic meter, compared to the best-performing design obtained through 
experimental methods. These studies demonstrate that data-driven 
intelligent design approach offers a highly efficient and practical solu
tion for addressing MOO problems in cementitious mixture design.

However, existing intelligent designs have primarily relied on con
ventional ML models, which depend on large, high-quality datasets and 
often require frequent tuning to maintain accuracy on new data [2]. In 
contrast, recent advances in transformer-based ML models offer a 
promising alternative, due to their ability to transfer knowledge from 
prior training to new datasets [9]. This leads to better predictive per
formance and eliminates the need for extensive retraining [9]. The 
tabular prior data fitted network (TabPFN) model [10], is a recent 
transformer-based model, pre-trained on millions of synthetic datasets, 
that has showed enhanced performance relative to standard ML tech
niques. For instance, Yu et al. [11] used TabPFN to predict urban air 
temperature and reported a 17.4 % reduction in prediction error 
compared to boosting models. Owing to their pre-trained architecture 
and strong generalization capabilities with limited data, 
transformer-based ML models have a significant potential to yield more 
accurate predictions and, consequently, improve optimization outcomes 
compared to conventional models. Despite their potential, the applica
tion of transformer-based ML models with optimization algorithms to 
address the MOO challenge of designing mixtures with mine tailings as 
SCMs remains largely unexplored.

To this end, this research employed a new data-driven intelligent 
design, which used a transformer-based TabPFN model to forecast the 

UCS of cementitious materials incorporating mine tailings as SCMs. To 
compare performance and computational efficiency, conventional 
boosting models were also constructed alongside the TabPFN model. 
Next, the predictions of the TabPFN model were interpreted using 
SHapley Additive exPlanations (SHAP) to enhance the transparency of 
results. Afterwards, a MOO case study was performed using three 
objective functions—the TabPFN model for strength prediction, along 
with equations for cost and emissions—to assess the feasibility of 
applying this intelligent approach. Finally, GreenMix AI—a user- 
friendly software tool—was developed to provide access to the trained 
ML models and optimization algorithms.

This study serves as a trailblazer in advancing sustainable cement- 
based materials, making four key contributions. First, it exploits a pre- 
trained model architecture—TabPFN—to accurately predict UCS using 
limited data, offering a powerful solution for data-scarce domains and 
eliminating the need for time-consuming model training. Second, this 
work breaks new ground by utilizing intelligent approaches to uncover 
underlying relationships between critical factors—such as tailings 
characteristics, mix proportions, and curing conditions—and UCS of 
mixtures using tailings as SCMs. This critical information empowers 
engineers with deeper insights for performance-driven mixture design. 
Third, this work is a pioneer in applying MOO to optimize these mix
tures, delivering designs that are not only cost-effective and sustainable 
but also difficult to achieve through experimental trials alone. Fourth, 
the newly developed software tool—GreenMix AI—bridges the gap be
tween research and practice by making data-driven intelligent design 
methods easily accessible for practical, real-world applications. In 
summary, this research advances the reuse of mine tailings and supports 
the development of an eco-friendly and economically resilient building 
sector.

2. Methodology

2.1. Overview of the research framework

Fig. 1 provides an overview of the research framework adopted in 
this study. Initially, experimental data were gathered from published 
studies as discrete data points. The compiled dataset was complete, with 
no missing values, and included detailed information on mixture designs 
and materials through multiple input features, along with the corre
sponding UCS values as the output. The dataset was subsequently split at 
random into two parts: 80 % for training and 20 % for testing. Using the 
training dataset, three boosting algorithms—gradient boosting regressor 
(GBR), extreme gradient boosting regressor (XGBR), and light gradient 
boosting regressor (LGBR)— were employed to build predictive models. 
These models were further optimized using the Optuna hyperparameter 
tuning library (version 4.2). The transformer-based model, TabPFN, did 

Nomenclature

SCM Supplementary cementitious material
OPC Ordinary Portland cement
ML Machine learning
MOO Multi-objective optimization
TabPFN Tabular prior data fitted network
UCS Uniaxial compressive strength
NSGA-II Non-dominated sorting genetic algorithm-II
SHAP SHapley Additive exPlanations
GBR Gradient boosting regressor
XGBR Extreme gradient boosting regressor
LGBR Light gradient boosting regressor
RMSE Root mean squared error
MAE Mean absolute error

SSA Specific surface area
PSD Particle size distribution
LCA Life cycle analysis
C-S-H Calcium silicate hydrate
C-A-S-H Calcium aluminate silicate hydrate
Ca(OH)2 Calcium hydroxide
C3S Tricalcium silicate
C2S Dicalcium silicate
CO2 eq Carbon dioxide equivalent
PCE Polycarboxylate ether
TSF Tailings storage facility
TPE Tree-structured Parzen estimator
MOEA/D Multi-objective evolutionary algorithm based on 

decomposition
RoW Rest of the world
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not require model training due to its pre-trained architecture [10]. Each 
model was then fitted using the training data to create prediction 
models. Their efficacy was assessed on the test data portion using four 
metrics: root mean squared error (RMSE), coefficient of determination 
(R2), mean absolute error (MAE), and the A-20 score. Subsequently, the 
best-performing model was interpreted using SHAP analysis and incor
porated into MOO case studies using the NSGA-II algorithm. The cost 
and life cycle analysis (LCA) data of constituent materials used in the 
MOO study were extracted from the literature and OpenLCA 2.4.1 
software analysis (integrated with Ecoinvent 3.11 database), respec
tively. Finally, GreenMix AI, a user-friendly software was developed 
providing easy access to the models and algorithms. The entire meth
odology was implemented in the Google Colab Jupyter notebook envi
ronment, using python 3.11.13 and scikit-learn 1.6.1, with access to an 
NVIDIA T4 Tensor Core GPU.

2.2. Dataset

2.2.1. Dataset construction
An initial review of the literature was systematically performed to 

identify research articles reporting UCS results for cementitious mate
rials utilizing tailings as SCMs. The search was performed on reputable 
research indexing platforms, comprising Web of Science, Compendex 
and Scopus, using terms like cement, mine tailings, mine waste, sup
plementary cementitious materials and uniaxial compressive strength. A 
database of experimental results was compiled from the selected arti
cles, containing detailed information on various inputs and their asso
ciated UCS values as the output. It is important to note that some articles 
were excluded due to missing information, such as material properties or 
chemical compositions. Additionally, this study focused solely on mix
tures containing mine tailings, and articles involving other SCMs (e.g., 
fly ash, slag) in combination with mine tailings were not considered. 
This decision was made because such data points are limited in number, 
and their inclusion could introduce bias into the dataset due to their 
underrepresentation.

Ultimately, a total of 399 unique data points were collected from 25 
research articles published between 1950 and 2025. Table 1 summarizes 
the research articles referenced for data extraction in this study, 
alongside the specific category of mine tailings reported in each article. 
This dataset represents a significant advancement over those reported in 
previous studies, which included only 24 data points (later combined 

with a concrete dataset containing no mine tailings) [12] and 148 data 
points [13], respectively. Moreover, these datasets were limited to a 
single type of mine tailings—copper—whereas the dataset compiled in 
this study incorporates data from research on 11 different types of 
tailings. This increased diversity enhances the versatility and general
izability of the models developed using this dataset.

2.2.2. Description and statistical summary of the dataset
The collected dataset consists of 14 input features, with UCS as the 

sole output feature, serving as the target variable for model training. The 
input features represent a combination of chemical and physical prop
erties of both OPC and mine tailings, material proportions, and the 
curing time of the samples. Specific surface areas (SSAs) of OPC and 
mine tailings were included as input features in place of conventional 
particle size distribution (PSD) parameters because SSA is a more reli
able indicator of material reactivity, which reflects the available surface 
area for hydration reactions [28]. Since PSD parameters are strongly 
correlated with SSA—smaller particle sizes typically result in higher SSA 
and increased reactivity—the exclusion of PSD metrics, such as median 
particle size, helps reduce redundancy and prevents unnecessary 
complexity in the models [28]. In addition, CaO, SiO2, and Al2O3 per
centages of OPC were selected to represent the type of OPC used across 
different studies. While the OPC type could alternatively be included as 
a categorical feature (e.g., based on name or grade), oxide composition 

Fig. 1. Overview of the research framework.

Table 1 
Research articles selected for data extraction.

Tailings category Reference Tailings category Reference

1 Copper [14] 14 Coal [15]
2 Copper [16] 15 Iron [17]
3 Copper [18] 16 Zinc [19]
4 Copper [20] 17 Marble [21]
5 Zinc, Copper, Gold [22] 18 Gold [23]
6 Iron [24] 19 Iron [25]
7 Iron [26] 20 Iron [25]
8 Tungsten [27] 21 Lead, Zinc [28]
9 Copper [5] 22 Phosphorous [29]
10 Molybdenum [30] 23 Iron [31]
11 Phosphate [32] 24 Molybdenum [33]
12 Gold [34] 25 Gold [4]
13 Iron [35] ​ ​ ​
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data were preferred, as continuous variables tend to perform better in 
ML models [36]. The other possible option was to consider the standard 
strength of cement paste (e.g., UCS at 28 days); however, oxide 
composition data were consistently reported across all the selected 
studies, whereas information on standard strength was missing in some 
cases. Similarly, oxide compositions were used as input features to 
represent the type of mine tailings, but were limited to Al2O3 and SiO2, 
as their ions are the primary contributors to forming supplementary 
hydration materials—calcium alumino silicate hydrate (C-A-S-H) 
gels—which can improve the UCS of the mixtures [37]. In addition, this 
decision helped reduce the complexity of the dataset by focusing only on 
the most relevant input features, which is especially important when 
working with a limited dataset. In addition, to represent the material 
proportions used in each study, five input features were included: OPC, 
mine tailings, fine aggregates, coarse aggregates, and superplasticizer, 
all expressed as mass per unit volume. It should be noted that the dataset 
contains mixtures of both mortar and concrete. For mortar mixtures, 
which do not contain coarse aggregates, a value of zero was assigned to 
the coarse aggregate field. Similarly, for mixtures that did not include 
any superplasticizer, a value of zero was used for that feature. Besides 
the chosen inputs, other parameters like curing temperature and hu
midity were not included in this study, as their values remained 
consistent (i.e., ambient temperature and relative humidity above 95 %) 
across all the studies and did not contribute any variability to the 
dataset.

Table 2 provides summary statistics for both the input variables and 
UCS. Additionally, Fig. 2 displays data spread histograms for each 
feature. According to the statistical summary and visualizations, the 
dataset shows wide value ranges and relatively high standard deviations 
across input features, which supports the development of more gener
alized and robust prediction models.

2.3. Machine learning models

2.3.1. Gradient boosting regressor models
The gradient boosting regressor (GBR) models are based on a 

sequential boosting approach, which is more advanced than traditional 
decision tree or random forest architectures [38]. Although GBR relies 
on multiple trees, it contrasts with the random forest method, which 
simply averages predictions from many trees [39]. Instead, GBR im
proves prediction performance iteratively by targeting the errors from 
the preceding model at each step [40]. This iterative process allows GBR 
to gradually reduce overall prediction error and build a more accurate 
and robust model. In this study, in addition to the original GBR model, 
two other variations, namely the XGBR [41] and LGBR [42] were also 
used to construct prediction models.

2.3.2. Tabular prior data fitted network regressor
TabPFN is a transformer-based ML model specifically designed for 

tabular data. Unlike traditional models such as GBR, XGBR, and LGBR, 
TabPFN does not require model training, hyperparameter tuning, or 
weight adjustments (typically associated with deep learning) [10]. The 
architecture of TabPFN consists of three main stages: (1) synthetic data 
generation, (2) pre-training, (3) real world prediction (i.e., final appli
cation) [10]. Instead of relying on limited real-world data, TabPFN is 
trained on a very large number of synthetic datasets. These datasets are 
created to resemble real tabular problems, with many possible re
lationships between input features (x) and target values (y) [10]. The 
process begins by choosing basic parameters such as dataset size, 
number of features, and complexity. Random input values are then 
generated assuming normal, uniform, or mixed probability distributions 
[10]. Next, these inputs are passed through a causal graph that applies 
different transformations, such as small neural networks or decision tree 
rules, while Gaussian noise is added to simulate uncertainty [10]. 
Finally, feature and target node values are extracted, yielding samples of 
input–output pairs. By repeating this process millions of times, more 
than 100 million synthetic datasets are created for training. This syn
thetic approach avoids issues such as data scarcity, privacy concerns, 
and contamination from using real-world data during training [10].

In the pre-training step, each dataset can be seen as being generated 
by a different hypothesis (φ) about how inputs and outputs are related, 
where φ ∈ ∅ (set of hypotheses). During training, part of each synthetic 
dataset is treated as training data (x feature values and corresponding y 
values), while the remaining part is used as test data (x feature values 
with held out y values). TabPFN is trained to predict the test values given 
the training examples as context [43]. Its transformer architecture al
lows TabPFN to capture relationships both between features and be
tween data samples through the two-way attention mechanism [43]. To 
do this, TabPFN learns to approximate the posterior predictive distri
bution (PPD) (Equation (1)), which represents the probabilities of 
possible outcomes for test inputs after considering many different hy
potheses and how well they explain the training data [43]. 

p(ytest |xtest ,Dtrain)∝
∫

p(y|x,φ)p(D|φ)p(φ)dφ (1) 

where p
(
ytest

⃒
⃒xtest ,D

)
is the PPD of test data, p(y|x,φ) is the probability 

distribution of output y under the hypothesis φ for x, p(D|φ) is the 
probability distribution of given data under the selected hypothesis, and 
p(φ) is the prior probability of the selected hypothesis before seeing the 
training data. TabPFN conducts the prior fitting of training data by 
sampling available hypotheses and synthetic data. This process is 
repeated until its parameters (θ) are optimized for the testing data, 
conditioned using the training data [43]. This is achieved through 
calculating the cross-entropy loss between model prediction and actual 
target values (held out). This loss is given by Equation (2). 

Table 2 
Summary statistics of the input features and the output.

Input Feature Minimum Q1 (25 %) Q2 (50 %) Q3 (75 %) Maximum Mean Standard Deviation

SSA of OPC (cm2/kg) 2870 3231 3500 3580 5420 3421 268.56
CaO % in OPC 17.6 20.22 21.3 21.88 28.16 21.65 2.65
SiO2 % in OPC 3.3 4.41 5.07 5.62 8.07 5.16 1.23
Al2O3 % in OPC 54.8 61.99 63 64.49 67.22 62.17 3.3
SSA of Mine Tailings (cm2/kg) 670 1814 2840 5776 12666 3793 2742.7
SiO2 % in Mine Tailings 1.12 32.2 52.56 63.3 92.9 47.98 26.79
Al2O3 % in Mine Tailings 0 2.16 6.85 13.68 25.1 8.13 6.97
OPC (kg/m3) 164 320.5 410.1 527.3 742.2 416.9 124.63
Mine Tailings (kg/m3) 8.9 53.3 80 175.8 466.6 114.4 87.8
Water (kg/m3) 103.5 160 254.6 293 390.6 243.1 78
Fine Aggregates (kg/m3) 585.9 785 1757.8 1757.8 2343.8 1380.1 528.5
Coarse Aggregates (kg/m3) 0 0 0 857 1503.8 346.5 503.1
Superplasticizer (kg/m3) 0 0 0 3.13 6.7 1.88 2.5
Curing Time (days) 3 7 28 42 90 32.1 31.26
UCS (MPa) 3 24 33.9 42.85 59.6 33.5 12.4
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LPFN =E{(xtest ,ytest)∪Dtrain}∼p(D)[ − log qθ(ytest |xtest ,Dtrain)] (2) 

where 
{(

xtest , ytest
)
∪Dtrain

}
∼ p(D) is the selected dataset comprising 

testing and training data, − log qθ
(
ytest

⃒
⃒xtest ,Dtrain

)
is the cross entropy 

loss for true ytest after comparing it with the predicted ytest .

Because TabPFN is pretrained on millions of synthetic datasets, it can 
be applied directly to new tasks without additional training. A user only 
needs to provide the training data for the task at hand, which the model 
treats as context. Using this context, TabPFN predicts the labels of un
seen inputs in a single forward pass [10]. On OpenML benchmark 
datasets, TabPFN has shown superior performance compared to 

Fig. 2. Data distribution of input features and the UCS.

C.B. Arachchilage et al.                                                                                                                                                                                                                       Cement and Concrete Composites 165 (2026) 106363 

5 



conventional boosting models, achieving speedups of up to 230 × while 
maintaining or even improving predictive accuracy [43].

2.4. Optuna framework

Optuna is an open-source optimization framework designed specif
ically for hyperparameter tuning in ML models. It formulates the tuning 
process as an optimization task, aiming to either maximize or minimize a 
defined objective function [44]. In this context, the hyperparameters 
serve as inputs to the function, and the output is the validation score
—calculated using a chosen evaluation metric for a given model [44]. 
Unlike traditional options such as grid or random search, which rely on 
predefined or randomly chosen hyperparameter combinations, Optuna 
uses a Bayesian optimization approach [45]. This allows it to dynami
cally select new hyperparameter sets based on the results of previous 
trials, enabling it to explore more encouraging areas of the search 
domain and significantly improve efficiency [44]. Additionally, Optuna 
incorporates a pruning mechanism that monitors the intermediate per
formance of trials. If a trial is unlikely to yield good results, it can be 
terminated early based on a predefined threshold, saving computational 
time and resources [44]. In this study, when using Optuna, the 
tree-structured Parzen estimator (TPE) [46] was used as the sampling 
algorithm, while the Hyperband pruner [44] was employed to terminate 
underperforming trials. The optimal hyperparameter combination was 
selected based on the minimum average RMSE obtained through 
repeated five-fold cross-validation, performed three times for different 
splits of the training data. This strategy is particularly important for 
limited datasets to ensure sufficient evaluation coverage and reduce the 
influence of outliers [47].

2.5. Performance evaluation metrics

This study used four well-established performance evaluation met
rics for regression tasks: R2, MAE, RMSE, and A-20. Among these, MAE 
and RMSE are error-based metrics, while R2 and A-20 are unitless scores 
[48–52]. A model is considered to perform well when its MAE and RMSE 
values are close to zero, and its R2 and A-20 scores are close to one 
[53–55]. Their respective formulas are shown in Equations (3)–(6). 

R2 =1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − yi)

2
(3) 

MAE=
1
N
∑N

i=1

⃒
⃒
⃒
⃒
⃒
yi − ŷi

⃒
⃒
⃒
⃒
⃒

(4) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi)

2

√
√
√
√ (5) 

A − 20 index =
N20
N

(6) 

where N is the number of samples, N20 is the number of samples where 
the predicted to actual value ratio is inside the range of 0.8–1.20, yi is 
the actual UCS, ŷi is the predicted UCS, and yi is the mean of the UCS 
values.

2.6. SHAP analysis

Although non-linear ML models perform well on tabular regression 
tasks, they lack interpretability [56]. This issue is particularly relevant 
for the models used in this study—boosting trees and transformer-based 
architectures—as their complex internal structures make it difficult to 
understand how predictions are made. However, the SHAP analysis, as 

an effective tool for interpreting ML models, can be used to unearth the 
importance of each input feature as well as their impact on model pre
dictions [57]. SHAP analysis adapts the game theory concept by treating 
the prediction process as a collaborative game, where each input feature 
is treated as player and the model’s output represents the game’s result 
[58]. The method quantifies the impact of each input by examining the 
change in predictions when the feature is included versus when it is 
excluded, across all possible combinations of input features [58]. By 
aggregating these differences, SHAP assigns a value—known as the 
SHAP value—that reflects the individual influence of each feature on the 
model’s prediction [58].

2.7. Multi-objective optimization

Although the advantages of using mine tailings as SCMs in cemen
titious mixtures are well recognized, it is essential to explore the trade- 
offs involved—particularly in balancing the UCS, cost, and emis
sions—to identify optimal mixture designs. To address this, the current 
study formulates two MOO problems, denoted as: F2(q) and F3(q), which 
are explained comprehensively in section 2.7.1.

2.7.1. Definitions of the objective functions
This study examined both bi-objective and tri-objective optimiza

tions, as separate problems. The bi-objective optimization (i.e., 
improving UCS and reducing the cost) problem is formulated as shown 
in Equation (7). 

min F2(q)= [ − f1(c, q,28), f2(q) ] (7) 

For tri-objective optimization, Equation (7) can be extended to 
include emissions reduction as an additional objective. This is shown in 
Equation (8). 

min F3(q)=
[
− f1(c, q,28), f2(q), f3(q)

]
(8) 

where f1(c, q,28) represents the optimal ML model used to forecast the 
UCS at 28 days, and f2(q) and f3(q) denote the linear functions used to 
calculate the total material cost and total emissions (as carbon dioxide 
equivalent (CO2 eq.)) of the mixtures, respectively. The UCS prediction 
model is expressed as a negative function to align with the minimization 
framework of the MOO problem. Here, c and q are arrays of input fea
tures used in the ML model, where c represents the features held con
stant and q represents the features that are varied during the 
optimization process. These arrays are further expressed using Equa
tions (9) and (10). 

c=
(
OPCSSA,OPCCaO,OPCSiO2 ,OPCAl2O3 ,MTSSA,MTSiO2 ,MTAl2O3

)
(9) 

q=(QOPC,QMT ,QW,QFA,QCA,QSP) (10) 

In this formulation, OPCSSA and MTSSA represent the specific surface 
areas of OPC and mine tailings, respectively, whereas the terms 
OPCCaO,OPCSiO2 ,OPCAl2O3 ,MTSiO2 ,MTAl2O3 denote the respective oxide 
compositions of OPC and mine tailings. Moreover, the terms QOPC,

QMT ,QW,QFA,QCA,QSP represent the masses (in kg) of OPC, mine tailings, 
water, fine aggregates, coarse aggregates, and superplasticizer, respec
tively, used per one cubic meter of the cementitious mixture. It is 
important to highlight that the features held constant (array c) do not 
possess practical significance when treated as optimization variables. 
For instance, although the optimization algorithm could theoretically 
identify an optimal chemical composition of tailings, such a result lacks 
practical relevance since tailoring tailings with a specific composition is 
infeasible. Therefore, only the material proportioning variables in array 
q are used in the optimization process. The values in array c are kept 
constant for a selected study based on the specific types of OPC and mine 
tailings used. However, if the type of OPC or tailings changes in a 
different study, the corresponding c values must also be updated 
accordingly.
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The functions for total material cost f2(q) and emissions (CO2 eq.) 
f3(q) are defined using Equation (11) and Equation (12), respectively. 

f2(q)=COPCQOPC + CMTQMT + CWQW + CFAQFA + CCAQCA + CSPQSP (11) 

f3(q)=EOPCQOPC + EMTQMT + EWQW + EFAQFA + ECAQCA + ESPQSP (12) 

where set of coefficients COPC,CMT ,Cw,CFA,CCA,CSP and EOPC,EMT ,

Ew,EFA, ECA,ESP are the unit material costs (US$/per kg) and unit 
emissions (kg CO2 eq./per kg) of OPC, mine tailings, water, fine ag
gregates, coarse aggregates, and superplasticizer, respectively. It is 
important to select appropriate coefficient values based on the 
geographical and economic context of a selected study. This flexibility 
ensures that the proposed MOO framework remains applicable and 
adaptable across different regions and case studies.

2.7.2. Constraints
Constraints play a crucial role formulating a MOO study by ensuring 

the generated results are both practical and feasible for real-world 
implementation [2]. This study considered both range and ratio con
straints, which are represented mathematically according to Equation 
(13). 

Cmin ≤Ci ≤ Cmax (13) 

where Ci denotes a selected input feature or ratio, and Cmin and Cmax 
represent its lower and upper bounds, respectively. Range constraints 
were applied to all variables in array q thereby restricting the optimi
zation process to values within experimentally validated limits. Addi
tionally, ratio constraints—water-to-cement ratio, fine aggregate-to- 
cement ratio, and coarse aggregate-to-cement ratio—were also 
imposed. By applying these constraints, the optimization respects 
established relationships between material proportions and perfor
mance characteristics, thereby helping ensure that the predicted mix
tures are both constructible and reliable. In this study, a case study was 
performed to explore the effectiveness of intelligent design in solving the 
formulated MOO problem. Comprehensive details on the selection of 
values for arrays c and q, along with the calculations of associated co
efficients and constraints, are provided in Appendix A.

2.7.3. NSGA-II algorithm
The NSGA-II algorithm utilizes a combined approach that integrates 

two key concepts: non-dominated sorting and genetic operations. In the 
context of MOO, a solution is said to dominate another if it performs at 
least equally across all objectives and outperforms in one or more of 
them [59]. Based on this principle, the algorithm identifies a pareto 
front composed of solutions that are non-dominated with respect to each 
other, yet dominate all other solutions in the population [7]. Subsequent 
fronts are formed by removing the previous front and repeating the 
dominance evaluation on the remaining solutions [59]. To evolve the 
population toward better solutions, NSGA-II applies genetic mecha
nisms, including selection, crossover, and mutation [59]. Crossover uses 
predecessor solutions (parents) and join them to find new solutions 
(children), exploring the search domain. Mutation modifies these solu
tions marginally to further exploit better performing regions [7]. This 
process is repeated iteratively, and after each generation, both parent 
and children solutions are considered together and sorted using 
non-dominated sorting and a crowding distance metric [7]. The best 
individuals are then selected for the next generation. This cycle repeats 
until a pre-determined number of steps or a specific convergence sce
nario is attained.

3. Results and discussion

3.1. Calibration and performance evaluation of ML models

Unlike the TabPFN model, the conventional tree-based boosting 

models selected in this study require proper calibration of hyper
parameters to achieve optimal performance [57]. To accomplish this, 
the Optuna framework was employed to tune key hyperparameters for 
each boosting model. Table 3 the optimal hyperparameter combinations 
that minimizes the average RMSE of model predictions when using 
Optuna.

In the next step, the base and tuned boosting models, along with the 
TabPFN model, were evaluated on the whole training dataset as well as 
on the unseen testing dataset to determine the most successful ML 
model. Table 4 lists the performance of base models on both training and 
testing datasets, whereas Table 5 summaries the results of tuned models 
and the TabPFN with their respective computational times. In these base 
models, default hyperparameters assigned by scikit-learn python pack
age are used, which are different from the values listed in Table 3 for 
tuned models.

Based on the results, the base GBR model performs well on the 
training data yet shows a significant drop in prediction accuracy on the 
testing portion, as indicated by a 66.3 % increase in RMSE and a 61.1 % 
increase in MAE. Similarly, the R2 and A-20 scores decrease by 3.5 % and 
6.8 %, respectively, further indicating reduced performance on unseen 
data. This performance drop can be attributed to the use of default 
hyperparameters, which are not tuned for the specific particularities of 
the dataset [57]. As a result, the GBR model likely overfits the training 
data and lacks generalization. XGBR and LGBR base models follow the 
same undesirable pattern, highlighting the importance of calibrating the 
ML models.

Compared with the performance of base models on testing data, the 
tuned models achieved lower prediction errors, despite some overfitting 
still being present. For example, the tuned GBR model reduced RMSE 
and MAE by 30 % and 31.1 %, respectively, while R2 and A-20 scores 
improved by 3.1 % and 5.6 %, respectively. Similarly, the other tuned 
boosting models—XGBR and LGBR—also outperformed their base 
counterparts by achieving lower errors and improved R2 and A-20 scores 
on the testing data. Accordingly, while tuning did not fully eliminate 
overfitting (i.e., due to the limitation of data), it led to boosting models 
that generalize more effectively to unseen data. Among the tuned 
boosting models, the GBR model achieved the best overall performance, 
attaining the smallest RMSE (2.166 MPa) and MAE (1.573 MPa), as well 
as the highest R2 (0.972) and A-20 (0.963) scores on the testing data. 
The TabPFN model slightly outperformed even the best tuned boosting 
model (GBR) in terms of prediction accuracy, achieving a lower RMSE 

Table 3 
Optimal hyperparameters of boosting models.

ML Model Hyperparameter Optimal Value

GBR Learning rate 0.1675
Max depth 3
Min samples split 4
Min samples leaf 6
Subsample 0.8405
N estimators 709

XGBR Learning rate 0.4775
Max depth 4
Min child weight 3.3387
Subsample 0.6647
Colsample by tree 0.7669
N estimators 956
Reg alpha 0.6095
Reg lambda 172

LGBR Learning rate 0.1701
Max depth 5
Num leaves 29
Min data leaf 17
Feature fraction 0.8710
Bagging fraction 0.7440
Bagging frequency 2
N estimators 902
Reg alpha 0.8860
Reg lambda 16.8168
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(2.115 MPa) and MAE (1.440 MPa), along with a marginally higher R2 

(0.973) and the same A-20 (0.963). The superior performance of 
TabPFN can be attributed to its architecture, which leverages Bayesian 
inference over multiple hypotheses, weighting each by how well it fits 
the training data [10]. In addition, unlike conventional models trained 
only on task-specific data, TabPFN is pretrained on millions of synthetic 
datasets, giving it prior knowledge for similar prediction tasks [11]. 
Moreover, its two-way attention mechanism captures complex feature 
interactions that tree-based models often miss, as these models combine 
features sequentially rather than simultaneously [43]. These charac
teristics enable TabPFN to typically outperform conventional boosting 
models, especially when data are limited. Although TabPFN out
performs other models, its performance on testing data still falls short of 
that on the training data. This is because the model has access to the true 
labels in the training set, which allows it to be well-conditioned for those 
points. However, due to the data limitations, TabPFN may not fully 
capture the complete context, leading to slightly lower performance on 
unseen data. In addition to its superior predictive performance, the 
TabPFN model did not require training or hyperparameter tuning, tak
ing only 7 s for internal data preprocessing. This represents a substantial 
improvement in computational efficiency compared to the 1052 s 
required by the tuned GBR model for hyperparameter optimization and 
training. The speed advantage of TabPFN is due to its architecture as a 
pre-trained transformer model, which eliminates model training and 
tuning requirements on new datasets [10].

Fig. 3 shows the agreement between the true and estimated values 
for both base ((a), (c), (e)) and tuned boosting models ((b), (d), (f)) as 
well as the TabPFN model (g). The visualizations further confirm the 
impact of tuning, as fewer testing data points (i.e., red points) fall 
outside the ±20 % error bounds in the tuned models compared to their 
base counterparts. Furthermore, in the TabPFN plot, most testing data 
are closely located with the X = Y line, denoting superior predictive 
performance over all the tuned boosting models. Similar trends are 
evident in Fig. 4, which presents the regression error characteristic 
(REC) curves. These plots show the percentage of predictions (i.e., ac
curacy in y-axis) falling within a given error tolerance (i.e., residual 
error in x-axis). The ideal model line, representing perfect prediction 
accuracy, reaches 100 % at zero error. In Fig. 4 (a), the tuned boosting 
models outperform TabPFN on the training data, as their curves lie 
closer to the ideal model line, indicating a higher proportion of accurate 
predictions at lower error thresholds. Conversely, in Fig. 4 (b), TabPFN 
demonstrates the best performance on the testing data, with a steeply 

rising curve (i.e., closest to the ideal model), suggesting that most of its 
predictions fall within a small error range. These results further confirm 
the TabPFN model’s strong generalization capability than the conven
tional boosting models, producing more accurate predictions on unseen 
data. Given its superior predictive performance and significantly lower 
computational time, the TabPFN model was selected as the most suitable 
ML model for estimating the UCS of cementitious mixtures examined in 
this study.

3.2. Explanation of the TabPFN model

The SHAP analysis was employed to explain the best ML model, 
TabPFN, to ensure its results are transparent and trustworthy. Fig. 5
depicts the order of input features based on their significance for model 
predictions. The x-axis of the plot shows the mean absolute SHAP values, 
while the y-axis represents input features used in the ML model. Based 
on the results, curing time stands out as the most important feature for 
model’s output, UCS of the mixtures. This is likely due to the strong 
dependence of UCS on the quantity of hydration products, which varies 
significantly with the duration of the curing period [60]. Following 
curing time, the proportions of water and OPC in the mixture ranked 
next in importance, with values of 5.22 and 5.20, respectively. This can 
be explained by the critical role both components play in the hydration 
process. OPC serves as the primary binding agent that holds the other 
materials—such as aggregates and additives—together, while water 
activates the chemical reaction with OPC [61]. The CaO content in OPC 
ranks next in importance, highlighting the influence of OPC composition 
on the strength development of cementitious mixtures. CaO is directly 
associated with the key clinker phases—tricalcium silicate (C3S) and 
dicalcium silicate (C2S)—which govern the formation of calcium silicate 
hydrate (C-S-H) gels, the primary hydration product responsible for 
strength [62]. This highlights the TabPFN model’s capability to differ
entiate between OPC varieties used across studies and to adjust its UCS 
predictions accordingly. Another key component, the amount of fine 
aggregates, received the next highest importance score of 1.25. This 
result is consistent with their known role in reducing porosity by filling 
voids within the mixture, which in turn contributes to improved UCS 
[62]. Following fine aggregates, the amount of mine tailings was ranked 
next in importance. In the referenced studies, mine tailings were pri
marily utilized as a partial substitution for OPC, serving as a SCM. When 
reactive, mine tailings can interact with Ca(OH)2 to form additional 
hydration products, such as calcium aluminate silicate hydrate 
(C–A–S–H) gels [16]. These products can contribute to improving the 
UCS of the mixtures [16]. However, the contribution of OPC to hydra
tion and strength development is significantly greater, which explains 
why the importance of the mine tailings feature is ranked lower than 
that of OPC [16]. The next most important features are associated with 
the chemical and physical properties of mine tailings. The SiO2 and 
Al2O3 contents directly influence the formation of C-A-S-H gels, while 
the SSA of the tailings is linked to their reactivity [63]. The higher 
importance ranking of SiO2 compared to Al2O3 is likely due to the pre
dominantly silicate nature (i.e., higher percentage of SiO2) of most mine 
tailings [63].

The remaining features considered by the TabPFN model—namely 
the SiO2 and Al2O3 contents of OPC, the SSA of OPC, superplasticizer 
content, and coarse aggregates—received the lowest importance scores, 
which are collectively represented in the plot. In the case of OPC, the 
SiO2 and Al2O3 contents are lower compared to CaO and exhibit limited 
variability across different samples. Similarly, OPC is a standardized 
material, and its SSA tends to remain relatively consistent, contributing 
to the lower importance of these features. In contrast, the SSA of mine 
tailings shows considerable variation, especially in studies where me
chanical activation was applied [30,19], likely explaining its higher 
importance ranking relative to OPC SSA. The contribution of super
plasticizer to UCS is also minimal, which aligns with findings from 
previous studies [57]. Lastly, the coarse aggregate content was ranked 

Table 4 
Performance of base ML models.

Model Dataset RMSE (MPa) R2 MAE (MPa) A-20

GBR Training 1.861 0.977 1.418 0.978
Testing 3.095 0.943 2.285 0.912

XGBR Training 0.155 1.000 0.080 1.000
Testing 2.829 0.953 2.049 0.925

LGBR Training 1.682 0.981 1.256 0.987
Testing 2.939 0.949 2.126 0.938

Table 5 
Performance of tuned ML models.

Model Computational 
time (s)

Dataset RMSE 
(MPa)

R2 MAE 
(MPa)

A-20

GBR 
Tuned

1052 Training 0.642 0.997 0.486 0.997
Testing 2.166 0.972 1.573 0.963

XGBR 
Tuned

600 Training 0.812 0.996 0.578 0.997
Testing 2.176 0.972 1.652 0.950

LGBR 
Tuned

176 Training 0.914 0.994 0.672 0.997
Testing 2.288 0.969 1.689 0.963

TabPFN 7 Training 0.917 0.994 0.661 1.000
Testing 2.115 0.973 1.440 0.963
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Fig. 3. Actual vs predicted value plots of different models.
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lowest, primarily because the majority of the datasets in this study 
involved mortar mixtures, in which coarse aggregates were not used (i. 
e., their value was zero).

In contrast to the feature importance plot, the impact analysis shown 
in Fig. 6 provides extensive information about each input feature’s 
relationship with the output. In this plot, a SHAP value of zero repre
sents the mean UCS prediction made by the TabPFN model. Each dot 
symbolizes a unique data point, with its position on the x-axis indicating 
its SHAP value—that is, the contribution of that feature to the predic
tion. The color of each dot corresponds to the feature’s actual value, 
based on the gradient bar: red indicates higher feature values, while blue 
represents lower values. Curing time has a positive contribution to UCS, 
as indicated by the red data points (i.e., higher curing times) being 
associated with positive SHAP values. This aligns with existing litera
ture, which shows that longer curing durations result in more hydration 
products, thereby enhancing the strength of the mixture [61]. Next, the 
contents of water and OPC show negative and positive correlations with 
UCS, respectively, which is consistent with experimental findings. High 
water content tends to lower the strength of cementitious mixtures by 
increasing porosity, as the excess water evaporates and leaves behind 
voids upon drying [2]. In contrast, mixtures with higher OPC content 
typically generate more C-S-H gels as hydration products, leading to 
increased strength [62]. The relationship between CaO content in OPC 
and UCS is complex. While higher CaO levels generally promote 

early-age strength development through accelerated hydration and 
greater C–S–H formation, excessive CaO—especially when not effec
tively utilized in pozzolanic reactions—can lead to a buildup of 
unreacted Ca(OH)2. This may negatively affect long-term strength and 
microstructural integrity [20]. The UCS exhibits a negative response to 
excessive fine aggregate content in the mixture. This can be ascribed to 
the reduced amount of OPC per unit volume, which limits the formation 
of hydration products and weakens the bonding between particles [62]. 
Literature suggests that excessive replacement of OPC with mine tailings 
can reduce the availability of Ca(OH)2 due to cement dilution [16]. 
Although higher amounts of mine tailings introduce additional silica 
and alumina into the mixture, the limited presence of reactive Ca(OH)2 
hinders pozzolanic reactions and hydration products, ultimately leading 
to a decrease in UCS [16]. The trend observed for mine tailings in Fig. 6
aligns with these findings in the literature, as red data 
points—representing higher tailings content—are associated with 
negative SHAP values. The trends for SiO2 and Al2O3 contents in mine 
tailings further support the reliability of the TabPFN model, as they 
confirm observations from literature. Although tailings with higher Si 
and Al are typically crystalline and less reactive, mechanical activation 
can alter their crystalline structure, making them more reactive [31]. 
Under such conditions, tailings with higher Si and Al contents can 
release more reactive ions into the matrix, promoting the formation of 
additional C-A-S-H gels as secondary hydration products [16]. The 

Fig. 4. Regression error characteristic curves of tuned booting models and TabPFN model.

Fig. 5. TabPFN model feature importance analysis for UCS prediction.
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observation in this study is consistent with these findings because the 
dataset is dominated by mechanically activated tailings, whose 
enhanced reactivity explains the positive relationship between higher Si 
and Al contents and improved strength. Likewise, the trend for SSA of 
mine tailings is consistent with literature, showing that increased SSA 
enhances reactivity, leading to higher UCS through the generation of 
more hydration products [16]. For OPC, the trends observed for SiO2 
and Al2O3 contents, as well as SSA, mirror those of mine tailings and 
show strong agreement with experimental evidence [61]. The plot for 
superplasticizer content indicates that increasing its dosage leads to 
improved UCS. This is likely due to the superplasticizer’s ability to 
effectively disperse cement particles, promoting faster and more com
plete hydration reactions [18]. Lastly, coarse aggregate content shows a 
positive correlation with UCS, which can be attributed to the inclusion 
of concrete samples in the dataset. These samples generally exhibit 
higher strength compared to mortar mixtures, which lack coarse ag
gregates. Overall, the SHAP analysis reinforces the reliability of the 
TabPFN model, as the feature impact trends closely align with estab
lished findings in the literature, providing interpretable and consistent 
explanations for the model’s predictions.

3.3. Multi-objective mixture design optimization

This section presents the results of the two separate multi-objective 
optimization analyses—bi-objective and tri-objective—conducted on 
the selected case study described in Appendix A.

3.3.1. Bi-objective optimization results
Fig. 7 illustrates the results of bi-objective optimization considering 

the cost and the UCS of different cementitious mixtures at 28 days. In the 
scatter plot, experimental designs and pareto-optimal solutions (i.e., 
pareto front) are represented by purple and orange points, respectively. 
The distribution reveals two distinct groups among the experimental 

designs: one characterized by lower UCS and cost, and the other asso
ciated with higher UCS and cost. Compared to the first group, the higher 
UCS designs incorporate increased aggregate content (e.g., from 684 kg/ 
m3 to 725 kg/m3), which enhances strength but also leads to higher 
overall mixture costs. Additionally, within each group, variations in UCS 
and cost can be attributed to differences in tailings content (ranging 
from 20 kg/m3 to 60 kg/m3). Since tailings are less expensive than OPC, 
mixtures with higher tailings content tend to be more cost-effective.

Fig. 6. Feature impact analysis for UCS prediction based on SHAP values from the TabPFN model.

Fig. 7. Pareto front and experimental designs of the bi-objective optimiza
tion problem.
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Fig. 7 shows the pareto front consisting of 100 unique, non- 
dominated optimal solutions. In each case, improving one objective 
would lead to a decline in the other, highlighting the trade-offs involved 
in the optimization process. Appendix B presents a detailed summary of 
these solutions, including the optimal proportions of each constituent 
material along with their corresponding UCS and cost values. As indi
cated by the results, the pareto-optimal solutions offer improved trade- 
offs between the two objectives, identifying mixture designs that either 
achieved higher UCS or reduced cost more effectively than the experi
mental designs. For example, point D on the pareto front (48.7 MPa, US$ 
30.8/m3) demonstrates that the cost can be reduced by US$ 4.7/m3 

compared to the experimental design at point C (48.6 MPa, US$ 35.5/ 
m3), while maintaining a nearly identical UCS through a different 
mixture composition. Likewise, the comparison between points A (34.6 
MPa, US$ 29.5/m3) and B (45.4 MPa, US$ 29.3/m3) reveals that for a 
similar expenditure, the UCS of the mixtures can be significantly 
improved by 10.8 MPa. Furthermore, the well-distributed pareto front 
provides the flexibility to select an optimal mixture design based on 
specific engineering requirements, with each solution offering a guar
anteed improvement over the experimental designs in at least one 
objective. This approach ultimately addresses the challenge of identi
fying the optimal proportions of mine tailings to replace OPC, along with 
the appropriate quantities of other constituent materials, aiming to 
reduce the overall cost of the mixtures without compromising their 
mechanical performance.

3.3.2. Tri-objective optimization results
Fig. 8 shows the results for extended analysis from the bi-objective 

problem, which considers an additional objective: emissions, alongside 
cost and UCS. Each scatter point represents a solution defined by its UCS, 
cost, and emissions values plotted along the x, y, and z axes, respec
tively. The experimental designs are represented by blue scatter points, 
whereas red points represent 100 unique pareto optimal solutions. These 
solutions are summarized in Appendix C. The differences in the z-axis 
(emissions) values among the points can be attributed to the varying 
OPC replacement ratios with mine tailings, as well as the substantial 
disparity in emission factors between OPC and mine tailings (0.919 kg/ 
m3 and 0.16424 kg/m3, respectively). Unlike the bi-objective case where 
the pareto front appears as a 2D curve, the tri-objective pareto front can 
be visualized as a surface distributed across a 3D space.

The pareto front from the tri-objective optimization aligns with the 

results of the previous bi-objective analysis, consistently outperforming 
the experimental designs with improved mixture compositions. These 
optimized solutions achieve better trade-offs by enhancing at least one 
of the objectives. For instance, compared to the experimental design at 
point A (37.2, 31.6, 383), the pareto-optimal solution at point B (45.4, 
29.3, 349.5) achieves a substantial reduction in both emissions (by 33.5 
kg CO2 eq./m3) and cost (by US$ 2.3/m3), while also improving UCS by 
8.2 MPa. Similarly, the comparison between points C (experimental) 
and D (pareto) reveals marginal improvement in UCS by 0.7 MPa, along 
with reductions in cost and emissions by US$ 0.6/m3 and 8.9 kg CO2 eq./ 
m3, respectively. Although the cost and emissions savings may appear 
marginal per unit volume of mixture, their impact becomes significantly 
more substantial when considered in the context of real-world con
struction projects which use large volumes of concrete. Overall, the re
sults from both bi-objective and tri-objective optimization demonstrate 
the effectiveness of the combined TabPFN and NSGA-II approach in 
guiding the mixture design of mine tailings-based cementitious mate
rials. The generated pareto fronts provide engineers with a valuable 
decision-making tool to select optimal mixture designs that meet specific 
performance, cost, and emission targets. Importantly, the multi- 
objective optimization framework is adaptable to different regional 
contexts by updating cost and emissions coefficients, as well as modi
fying relevant constraints, making it broadly applicable across diverse 
construction settings.

3.4. GreenMix AI: a software tool

The newly developed software tool, GreenMix AI, provides user- 
friendly access to the ML models and optimization algorithms devel
oped in this study. It features three main functions: (1) updating the 
existing model with new data, (2) predicting the UCS of mixture designs, 
and (3) performing multi-objective optimization. Each function is 
organized into a dedicated tab within the software interface for ease of 
use.

Fig. 9 shows a snapshot of the first tab, which enables users to update 
the current TabPFN model with new data. Section (a) displays the 
available tabs, allowing easy navigation between different functional
ities. When new experimental data—such as that obtained from a 
different type of mine tailings—is available, users can upload it using 
button (b), which opens a file dialog to select a locally stored file in 
comma separate values (CSV) format. Button (c) initiates data valida
tion, checking for missing values and verifying that the input features 
match the required format. Once the data is validated, button (d) trig
gers the update process, retraining the TabPFN model with the new data 
and saving the updated model for future use. A dedicated notifications 
area provides real-time feedback, guiding users through each step and 
alerting them to any issues encountered.

Fig. 10 illustrates the second tab of the GreenMix AI software, which 
allows users to predict the UCS of a specific mixture design. In section 
(a), users are required to input all necessary parameters related to the 
mixture. Once the inputs are provided, the prediction can be initiated by 
clicking button (b), which triggers the trained ML model embedded in 
the backend of the software. The predicted strength is then displayed in 
the output box (c), with additional guidance provided through prompt 
messages displayed below the output area.

Fig. 11 presents the third and final tab of the GreenMix AI software, 
which enables users to perform MOO of mixture designs. In the backend, 
the software formulates the optimization problems based on the meth
odology described in section 2.7.1. In area (a) in Fig. 11, users can 
choose between bi-objective and tri-objective optimization modes using 
radio buttons. Section (b) guides users through a step-by-step input 
process, where they provide all necessary information, including values 
for constant variables, cost and emissions coefficients, range constraints, 
and ratio constraints. Section (c) allows users to specify optimization 
parameters (e.g., population size, number of generations), and the 
optimization process is initiated by clicking button (d). Once executed, 

Fig. 8. Pareto front and experimental designs of the tri-objective optimiza
tion problem.
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the algorithm runs in the background, and the optimized mixture de
signs are saved as an Excel (.xlsx) file locally on the user’s computer. To 
enhance user experience, the software provides real-time notifications to 
flag issues such as missing values or illogical inputs (e.g., upper bounds 
being smaller than lower bounds), and to suggest corrective actions or 
next steps. Additionally, a continuously updated progress bar displays 
the optimization status, offering users a clear view of ongoing compu
tational progress.

GreenMix AI enables easy customization, allowing users to tailor 
their own MOO studies based on different types of mine tailings and 
OPC, experimental conditions, and cost and emissions data (i.e., changes 
depending on the regional and transport-specific factors)—simply by 
modifying input values within the program. This flexibility makes the 
software a universally applicable tool, with the potential to significantly 
advance sustainable and economically resilient practices in the con
struction industry globally.

4. Research limitations and recommendations for future studies

Although the dataset used in this study is significantly larger and 
more diverse than those found in the literature, continuously updating 
the dataset remains important to further enhance model performance. 
Furthermore, incorporating additional input features—such as curing 
time, humidity level, cement mixing parameters (e.g., duration and 
speed) and UCS testing conditions (e.g., loading rate and sample size)— 
could enhance the robustness of the current model. The TabPFN model is 

particularly well-suited for this, as it requires minimal adjustments 
when new data are added—unlike many traditional models that require 
extensive re-tuning. The developed software tool, GreenMix AI, further 
streamlines this process, allowing users with minimal coding experience 
to easily update the model through a simple, user-friendly interface. In 
the future, concepts such as federated learning could be integrated into 
the software, enabling collaborative training of the TabPFN model 
across multiple users or institutions without directly sharing raw data
—thereby preserving data privacy. In addition, as transformer-based 
pre-trained models continue to evolve, it will be important to compare 
the performance of newer models against TabPFN as they become 
available. This will help ensure that the most accurate and efficient tools 
are used for future applications. Beyond the potential technical im
provements to GreenMix AI, an important research direction will be the 
evaluation of its usability. Future work will involve assessing the soft
ware with end-users to examine its practicality, user-friendliness, and 
ability to integrate into real-world workflows.

Additionally, this study employed only the NSGA-II algorithm for the 
MOO case study. Future work should explore other MOO algorithms, 
such as multi-objective evolutionary algorithm based on decomposition 
(MOEA/D) [64] and NSGA-III [65], to evaluate their applicability and 
compare results. In addition to the above limitations, the authors 
acknowledge the absence of experimental validation for the optimized 
mixture designs. While the data-driven results obtained in this study are 
promising, confirming their reliability through dedicated laboratory 
experiments is essential. Future work will therefore focus on conducting 

Fig. 9. GreenMix AI Table 1 for data input.
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such experiments to validate the optimized designs. Finally, while this 
study focused solely on UCS as the primary objective, other critical 
performance indicators—such as setting time, workability (flow), and 
tensile strength—can also be considered as additional objectives, 
depending on specific design requirements.

5. Conclusion

This research introduces a new data-driven intelligent design that 
applies machine learning (ML) techniques to the multi-objective opti
mization (MOO) of cementitious mixtures incorporating mine tailings as 
supplementary cementitious materials (SCMs). A transformer-based 
tabular prior data fitted network (TabPFN) model—shown to outper
form conventional boosting ML models—was used to predict uniaxial 
compressive strength (UCS) and further interpreted using SHapley Ad
ditive exPlanations (SHAP). In the MOO case study, the TabPFN model 
was integrated with cost and emissions objectives to optimize the 
mixture design. The following conclusions can be reached based on the 
findings of this study. 

1. The Optuna framework effectively optimized the hyperparameters of 
the selected boosting ML models, resulting in enhanced performance 
over their respective baseline versions, with some models achieving 
up to a 30 % reduction in UCS prediction errors on the testing data. 
Among all models evaluated, the transformer-based TabPFN model 
exhibited the best overall performance, outperforming even the top- 

tuned boosting models. Importantly, the TabPFN model required no 
model-specific training or hyperparameter tuning, significantly 
reducing computational time by 1045 s. Given its predictive accu
racy, computational efficiency, and adaptability, TabPFN is partic
ularly well-suited for regression tasks involving small, literature- 
based datasets that are frequently updated.

2. SHAP analysis identified curing time as the most prominent input in 
the TabPFN model, followed by key constituent materials such as 
water, OPC, fine aggregates, and mine tailings. The results empha
sized the importance of controlling water content, aggregate pro
portions, and the OPC replacement ratio with mine tailings, as each 
showed a strong relationship with UCS. Additionally, the analysis 
revealed that the reactivity of mine tailings—reflected by their spe
cific surface area—plays a critical role in strength development. 
Tailings with higher SiO2 and Al2O3 contents were also associated 
with greater strength gains, highlighting the need to select appro
priate materials based on performance requirements. Overall, the 
SHAP-derived model interpretations were aligned with experimental 
evidence, reinforcing the model’s reliability and interpretability. 
These insights provide engineers with practical guidance for 
designing sustainable mixtures tailored to specific strength targets.

3. The MOO case study demonstrated the critical value of optimizing 
mine tailings based-mixture designs to achieve maximum benefits of 
waste reutilization. All pareto-optimal solutions generated by the 
TabPFN model, in combination with the non-dominated sorting ge
netic algorithm-II (NSGA-II), outperformed the original experimental 

Fig. 10. GreenMix AI Table 2 for performance prediction.
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designs in both bi-objective and tri-objective optimization scenarios. 
These optimized solutions offer engineers a practical framework for 
tailoring mixtures to meet specific performance requirements while 
minimizing cost and environmental impact.

4. The developed software tool, GreenMix AI, serves as a critical bridge 
between advanced research methodologies and practical imple
mentation. It provides streamlined access to the ML models and MOO 
algorithms developed in this study, without requiring users to have 
expertise in coding, ML, or optimization. Through an intuitive 

interface, users can update the model with their own experimental 
data, predict the UCS of new mixture designs, and perform custom
ized optimization studies to identify designs that balance strength, 
cost, and emissions. Overall, this research showcases the potential of 
integrating ML and optimization techniques to promote the use of 
mine tailings as SCMs, advancing both engineering efficiency and 
sustainability in the mining industry.

Fig. 11. GreenMix AI Table 3 for mixture design optimization.
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Appendix A 

A.1. Cost and LCA data

In this study, a previously published experimental investigation from Egypt [21], which utilized marble tailings as SCMs, was used as the basis for 
the case study formulation. This study was selected as it provides experimental results for a wide range of mixture conditions—such as varying 
water-to-cement ratios, aggregate-to-cement ratios, and tailings contents—resulting in multiple data points. Accordingly, the coefficients used in 
Equations (11) and (12) in the manuscript were determined based on values reported in the literature and supplemented with data from the Ecoinvent 
database accessed through the OpenLCA software. These values are listed in Table A.1.

Table A.1 
Values of cost and emission coefficients used in the case study

Material Cost coefficients (US$/kg) Emission coefficients (CO2 eq./kg)

OPC COPC 0.0574 EOPC 0.919
Mine tailings CMT 0.0001 EMT 0.16424
Water CW 0.0001 Ew 0.00122
Fine aggregates CFA 0.0038 EFA 0.01329
Coarse aggregates CCA 0.0057 ECA 0.01877
Superplasticizer CSP 1.2 ESP 1.67377

The cost coefficients for each material were derived from the latest available reports on the Statista online database, which provide average 
construction material prices in Egypt. The cost of OPC was reported as US$ 2.87 per 50 kg sack, resulting in a unit price of approximately US$ 0.0574 
per kg. The prices of fine and coarse aggregates were given as US$ 6.08/m3 and US$ 10.49/m3, respectively. These values were converted to cost per 
kg by assuming average bulk densities of 1600 kg/m3 for fine aggregates and 1850 kg/m3 for coarse aggregates. Similarly, the commercial rate for 
water in Egypt, estimated at US$ 0.0001 per kilogram, was used to ensure consistency with data representative of an industrial-scale project. 
Furthermore, commercial bulk pricing was considered for estimating the unit cost of polycarboxylate ether (PCE) superplasticizer (40 % active 
substance), reflecting typical rates for large-scale procurement. Regarding mine tailings, a zero-burden approach was adopted, meaning the upstream 
costs associated with mining, mineral processing, and tailings generation were excluded. It was assumed that marble tailings were dry and readily 
available at the tailings storage facility (TSF), requiring no additional energy for drying. However, the transport costs were considered non-negligible, 
and it was assumed that the TSF and the concrete mixing plant are located within 1.5 km distance, consistent with assumptions made by Zhou et al. 
(2024) [66]. Finally, based on an average transport cost of US$ 0.066 per tonne per kilometer in Egypt and a distance of 1.5 km, the final cost of mine 
tailings was estimated at US$ 0.001 per kg.

The emission coefficients presented in Table A.1 were derived using data from version 3.11 of the Ecoinvent database. For all constituent materials, 
market activity processes were selected, because they account for emissions associated with the production of each material as well as transportation 
from producers to consumers (i.e., averaged) within the selected region. Since Egypt is not explicitly represented in the database, the region labeled 
rest of the world (RoW) was used for the analysis. All the life cycle impact analysis data were generated using the ReCiPe 2016 (v1.03), midpoint (H) 
method. Consistent with the cost calculations, the emissions associated with mine tailings were based solely on transportation. Specifically, the market 
process "freight lorry, 32-ton, EURO 6" from the Ecoinvent database was used, assuming a transport distance of 1.5 km. Emissions from upstream 
processes were excluded in accordance with the zero-burden approach. It is important to emphasize the influence of transport distance, as studies have 
shown that transporting materials over distances greater than 15 km can negate the environmental benefits of using more sustainable alternatives 
[67]. Therefore, the feasibility of utilizing mine tailings as SCMs in cementitious mixtures largely depends on the proximity of the TSF to the concrete 
plant.

A.2. Constraints

Constraints play a crucial role in a MOO problem by ensuring that the generated solutions are both practical and feasible for real-world imple
mentation. In this study, both range constraints and ratio constraints were applied, as shown in Table A.2 and Table A.3. These constraints were 
derived from the mixture designs reported in the referenced case study on marble tailings [21]. It is important to note that the specific values of these 
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constraints should be adjusted based on the mixture designs and requirements of other studies.

Table A.2 
Range constraints

Lower bound (kg/m3) Upper bound (kg/m3)

OPC 340 380
Mine Tailings 20 60
Water 160 200
Fine aggregates 681 725
Coarse aggregates 1021 1087
Superplasticizer 1.1 5.9

Table A.3 
Ratio constraints

Lower bound (kg/m3) Upper bound (kg/m3)

Water-to-cement ratio (W/C) 0.4 0.5
Fine aggregates-to-cement ratio (FA/C) 1.7025 1.8125
Coarse aggregate-to-cement ratio (CA/C) 2.565 2.705

Appendix B 

Table B.1 
Optimal mixture designs and their respective UCS and cost values identified by bi-objective optimization

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m3)

372.90 31.09 162.03 690.09 1064.33 5.87 53.88 37.16
374.18 31.12 162.43 691.82 1065.76 5.88 53.90 37.26
373.22 31.19 161.97 688.60 1064.37 5.82 53.86 37.11
365.27 32.74 160.00 681.92 1025.16 4.08 52.52 34.32
352.95 32.80 160.03 681.79 1021.96 1.73 48.51 30.77
364.97 33.07 160.05 681.37 1066.77 5.20 53.37 35.88
360.49 33.18 160.01 681.08 1022.86 3.08 51.28 32.82
365.57 33.19 160.00 681.14 1064.26 3.92 52.57 34.36
365.57 33.20 160.00 681.14 1064.26 5.88 53.85 36.72
365.63 33.20 160.00 681.13 1031.69 5.88 53.77 36.53
365.69 33.21 160.00 681.11 1064.26 3.79 52.47 34.21
364.97 33.22 160.09 681.13 1024.58 5.70 53.57 36.24
365.91 33.22 160.08 681.08 1028.91 3.48 52.11 33.66
361.93 33.22 160.04 681.65 1029.37 1.93 49.88 31.57
360.40 33.24 160.00 681.09 1022.88 1.46 48.79 30.88
360.46 33.24 160.08 681.09 1022.88 1.41 48.71 30.82
361.93 33.25 160.04 681.65 1029.37 1.93 49.92 31.57
364.93 33.25 160.04 681.08 1023.56 1.76 49.82 31.51
364.12 33.26 160.02 681.90 1022.86 4.88 52.95 35.20
363.42 33.26 160.02 681.75 1023.54 4.84 52.91 35.11
361.30 33.29 160.04 681.79 1030.96 5.30 53.18 35.59
361.67 33.34 160.07 681.00 1022.44 1.78 49.60 31.33
364.96 33.35 160.08 681.15 1028.91 3.48 52.04 33.60
364.96 33.35 160.00 681.15 1025.15 3.41 51.99 33.50
365.61 33.35 160.04 681.91 1025.13 4.94 53.12 35.37
363.42 33.41 160.03 681.75 1023.49 2.77 51.00 32.62
364.11 33.41 160.00 681.95 1025.13 2.44 50.60 32.28
363.36 33.41 160.04 681.26 1023.78 3.88 52.28 33.96
363.43 33.41 160.03 682.09 1024.52 3.43 51.91 33.43
364.48 33.41 160.04 681.02 1031.30 5.87 53.71 36.45
363.41 33.41 160.02 681.89 1030.88 3.93 52.38 34.07
363.38 33.47 160.04 681.62 1024.05 5.55 53.43 35.96
364.31 33.78 160.04 681.79 1023.27 1.61 49.50 31.28
364.95 33.85 160.04 681.26 1023.78 4.56 52.82 34.86
364.95 33.85 160.04 681.26 1023.78 4.67 52.88 34.99
363.37 33.85 160.09 681.78 1023.32 2.14 50.25 31.87
363.37 33.85 160.07 681.78 1023.23 2.19 50.33 31.92
364.86 33.86 160.07 687.14 1029.23 2.19 50.41 32.07
364.85 33.86 160.07 687.14 1029.24 2.19 50.41 32.06
364.22 33.86 160.02 681.02 1023.39 4.35 52.63 34.57
361.61 33.87 160.05 681.90 1029.08 2.48 50.58 32.20
365.58 33.89 160.03 681.75 1029.21 2.77 51.16 32.78

(continued on next page)
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Table B.1 (continued )

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m3)

364.12 33.89 160.00 681.90 1033.37 4.90 53.04 35.29
363.01 33.90 160.02 681.98 1022.59 1.38 48.89 30.94
351.24 33.94 160.03 681.79 1023.82 1.83 48.57 30.81
363.41 33.97 160.03 681.79 1022.73 2.73 50.93 32.57
364.96 33.98 160.09 681.24 1023.84 5.65 53.57 36.17
364.23 33.98 160.02 682.08 1034.31 3.62 52.15 33.75
351.24 33.98 160.02 681.80 1021.98 1.54 47.98 30.45
351.24 33.98 160.03 681.80 1029.07 1.72 48.39 30.70
350.55 33.98 160.04 681.80 1023.27 1.72 48.28 30.63
351.46 33.98 160.03 681.80 1029.18 1.69 48.36 30.68
364.22 33.98 160.02 682.08 1034.31 3.67 52.22 33.81
364.31 33.98 160.00 681.24 1023.50 3.08 51.52 33.05
364.24 33.98 160.04 681.62 1030.06 5.55 53.49 36.04
364.80 33.99 160.02 681.75 1029.21 2.52 50.81 32.44
364.10 33.99 160.02 681.75 1023.51 2.52 50.75 32.37
364.79 33.99 160.03 681.07 1025.19 2.62 50.92 32.53
364.25 33.99 160.04 681.75 1023.51 2.76 51.07 32.67
351.68 33.99 160.04 681.40 1022.40 1.59 48.14 30.53
364.79 33.99 160.02 681.12 1034.31 3.93 52.47 34.16
364.92 34.00 160.00 681.14 1024.59 5.78 53.65 36.32
365.06 34.03 160.03 681.33 1031.32 3.23 51.84 33.31
365.27 34.03 160.03 681.46 1031.32 3.23 51.87 33.33
364.27 34.04 160.04 681.87 1025.13 4.91 53.04 35.26
365.11 34.10 160.03 682.01 1027.32 4.43 52.75 34.74
360.46 34.39 160.02 681.79 1021.88 1.55 49.04 30.99
361.25 34.39 160.02 681.77 1022.49 1.55 49.16 31.03
349.23 34.40 160.02 681.77 1022.49 1.55 47.80 30.34
365.05 34.80 160.04 681.40 1025.69 5.20 53.31 35.65
363.12 34.87 160.04 681.46 1033.63 3.11 51.63 33.08
365.04 34.94 160.03 681.78 1066.03 1.72 50.00 31.70
363.15 34.95 160.00 681.95 1049.35 3.11 51.68 33.17
351.49 35.04 160.08 681.67 1022.38 1.57 48.08 30.50
362.61 35.05 160.05 681.13 1025.03 1.77 49.71 31.38
361.84 35.05 160.08 681.64 1021.64 1.59 49.26 31.11
363.06 35.07 160.00 682.11 1029.21 2.02 50.12 31.75
363.06 35.14 160.00 682.15 1029.21 2.02 50.15 31.75
343.19 39.01 160.02 681.65 1024.20 1.69 47.56 30.17
343.19 39.19 160.02 681.01 1024.20 1.69 47.53 30.17
341.31 39.21 160.03 681.12 1026.11 1.56 47.03 29.92
341.31 39.21 160.02 681.01 1024.40 1.54 46.99 29.88
341.31 39.21 160.03 681.59 1022.88 1.50 46.84 29.83
341.31 39.21 160.03 681.59 1022.88 1.52 46.89 29.85
341.94 39.23 160.02 681.77 1022.54 1.35 46.62 29.68
341.98 39.24 160.02 681.65 1022.42 1.69 47.37 30.09
340.39 39.32 160.04 682.09 1022.74 1.30 46.32 29.54
341.56 39.40 160.03 681.12 1026.11 1.61 47.17 30.00
340.77 39.61 160.09 681.66 1023.92 1.14 45.66 29.37
340.77 39.61 160.09 681.66 1023.92 1.71 47.26 30.06
340.92 39.61 160.09 681.12 1024.01 1.27 46.14 29.54
340.92 39.61 160.09 681.12 1022.76 1.27 46.11 29.53
340.84 39.66 160.04 681.56 1023.70 1.34 46.45 29.61
340.92 39.71 160.08 681.08 1022.81 1.24 46.01 29.49
351.55 39.73 160.02 681.98 1022.61 1.38 47.66 30.28
340.16 40.94 160.14 681.35 1022.68 1.20 45.72 29.41
340.56 41.01 160.03 681.38 1024.41 1.23 45.86 29.47
340.07 41.45 160.00 681.08 1022.82 1.10 45.43 29.28
341.98 41.78 160.03 681.31 1022.75 1.42 46.72 29.78
340.07 41.87 160.00 681.06 1025.09 1.13 45.48 29.33

Appendix C 

Table C.1 
Optimal mixture designs and their respective UCS, cost and emission values identified by tri-objective optimization

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m3) CO2 eq. (kg)

351.92 31.99 160.19 681.72 1029.30 3.87 51.27 33.32 363.72
363.82 32.81 160.13 681.80 1021.16 2.97 51.21 32.88 373.14
364.52 32.81 160.13 681.80 1023.54 2.99 51.31 32.96 373.86
364.62 32.81 160.13 681.80 1023.54 3.05 51.43 33.04 374.05
351.92 32.85 160.13 681.97 1023.50 2.99 50.16 32.24 362.29
349.38 33.11 160.01 681.64 1029.63 4.82 51.69 34.31 363.16

(continued on next page)
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Table C.1 (continued )

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m3) CO2 eq. (kg)

349.57 33.11 160.01 681.64 1024.40 4.82 51.62 34.30 363.24
363.76 33.77 160.03 681.66 1024.44 2.17 50.33 31.93 371.95
363.35 33.78 160.04 681.67 1069.00 5.83 53.70 36.55 378.54
363.76 33.78 160.04 681.67 1069.00 5.86 53.76 36.62 378.97
361.31 34.64 160.03 681.67 1024.43 5.69 53.33 36.02 375.74
361.31 34.64 160.03 681.49 1022.06 5.04 52.80 35.23 374.61
361.23 34.65 160.04 681.52 1028.07 1.60 49.29 31.12 368.89
360.81 34.65 160.04 681.52 1028.39 4.45 52.53 34.52 373.28
364.59 34.67 160.04 681.68 1024.89 5.86 53.67 36.41 379.05
361.99 34.71 160.07 681.52 1065.94 1.68 49.70 31.48 370.44
364.10 34.72 160.03 681.68 1068.06 5.87 53.78 36.64 379.44
360.84 34.73 160.17 681.80 1024.29 2.04 49.95 31.61 369.22
363.35 34.74 160.13 681.57 1028.05 5.83 53.51 36.32 377.93
363.22 34.74 160.03 681.80 1029.75 1.76 49.76 31.44 371.03
345.32 34.76 160.03 681.52 1027.93 1.35 47.02 29.91 353.86
352.39 34.77 160.02 681.50 1024.59 4.52 51.82 34.11 365.61
363.32 34.79 160.13 681.62 1025.00 5.48 53.33 35.88 377.26
363.32 34.79 160.00 681.62 1025.00 5.65 53.44 36.09 377.55
345.94 34.80 160.02 681.63 1024.74 5.79 52.12 35.25 361.81
345.54 34.80 160.02 681.66 1023.89 5.79 52.03 35.23 361.43
343.59 34.80 160.08 682.06 1021.56 1.35 46.79 29.78 352.18
343.59 34.80 160.03 682.06 1021.52 1.41 46.92 29.85 352.27
361.60 34.81 160.03 681.66 1021.20 2.91 51.02 32.67 371.31
357.37 34.84 160.00 682.01 1021.52 1.76 49.01 31.05 365.52
344.13 34.84 160.03 682.01 1021.66 1.76 47.70 30.29 353.36
353.80 34.84 160.02 682.01 1021.32 4.88 52.16 34.60 367.46
349.28 34.90 160.03 682.08 1024.77 2.85 49.82 31.92 359.98
348.91 34.91 160.08 681.66 1024.44 3.33 50.58 32.48 360.45
360.96 34.98 160.02 681.66 1024.30 5.35 53.17 35.59 374.91
360.99 34.98 160.01 681.71 1070.16 5.87 53.52 36.48 376.67
360.48 34.98 160.01 681.71 1028.08 5.80 53.31 36.12 375.28
360.97 35.00 160.03 681.62 1024.55 1.41 48.80 30.86 368.32
357.00 35.12 160.03 681.65 1028.30 3.17 51.10 32.76 367.70
355.98 35.65 160.03 682.07 1024.89 1.55 48.51 30.75 364.09
363.15 35.65 160.04 681.63 1027.94 4.88 52.91 35.17 376.31
354.44 35.65 160.02 682.05 1025.45 5.49 52.69 35.39 369.29
343.47 35.65 160.04 681.63 1025.00 4.88 51.12 34.02 358.17
349.10 35.67 160.03 681.64 1024.89 4.41 51.44 33.78 362.55
342.46 35.97 160.13 681.69 1021.15 1.12 45.88 29.43 350.93
342.46 35.97 160.00 681.69 1021.15 1.36 46.72 29.72 351.32
361.68 36.02 160.03 681.49 1024.42 5.12 53.02 35.36 375.36
342.08 36.09 160.13 681.54 1021.15 2.88 49.19 31.52 353.53
356.00 36.09 160.04 682.07 1024.77 2.86 50.43 32.32 366.38
355.60 36.09 160.04 682.11 1023.93 2.86 50.39 32.30 366.00
349.10 36.12 160.04 681.68 1024.89 5.86 52.42 35.53 365.06
362.13 36.13 160.02 681.52 1064.45 5.25 53.25 35.77 376.75
361.59 36.19 160.08 681.49 1021.14 1.68 49.43 31.20 369.47
362.12 36.20 160.13 681.51 1029.55 2.03 50.09 31.70 370.71
344.74 36.21 160.13 681.49 1029.55 2.04 48.33 30.72 354.76
360.63 36.24 160.01 681.67 1024.53 1.36 48.66 30.78 368.14
343.39 36.25 160.03 681.47 1021.58 4.09 50.62 33.05 356.81
361.59 36.26 160.08 682.06 1024.55 3.34 51.65 33.21 372.34
346.37 36.27 160.02 681.71 1027.30 1.88 48.24 30.61 355.97
346.37 36.27 160.02 681.70 1027.30 1.67 47.87 30.35 355.60
349.66 36.30 160.00 681.68 1024.65 5.45 52.23 35.06 364.90
350.08 36.30 160.00 681.62 1024.65 4.46 51.54 33.90 363.64
345.59 36.37 160.04 682.04 1026.09 5.37 51.74 34.74 361.08
345.38 36.42 160.19 681.50 1021.14 1.59 47.48 30.16 354.47
357.45 36.42 161.39 682.00 1021.52 5.59 52.78 35.66 372.27
345.45 36.42 160.19 681.50 1021.14 1.80 47.92 30.42 354.88
349.69 36.60 160.00 681.97 1024.67 2.99 49.99 32.11 360.87
349.69 36.60 160.13 681.97 1024.67 2.99 50.02 32.11 360.87
343.20 36.77 160.08 681.48 1022.08 5.04 51.35 34.19 358.32
362.63 36.78 160.04 681.52 1029.03 5.83 53.51 36.29 377.63
362.63 36.78 160.03 681.51 1029.02 2.15 50.23 31.87 371.47
348.91 36.88 160.03 681.66 1024.44 2.18 48.89 31.09 358.84
357.60 36.88 160.03 681.67 1024.36 1.32 48.14 30.56 365.38
348.71 36.89 160.13 681.54 1026.38 4.55 51.50 33.94 362.66
345.13 36.89 160.03 681.50 1024.36 4.43 51.06 33.57 359.12
343.91 36.90 160.03 681.45 1024.36 5.82 51.86 35.17 360.33
345.70 36.91 160.03 681.66 1024.36 1.86 48.09 30.52 355.35
343.00 36.91 160.04 681.71 1024.39 1.55 47.23 30.00 352.36
345.27 36.95 160.03 681.66 1024.36 1.36 47.05 29.90 354.13
348.70 36.97 160.13 681.56 1026.38 2.09 48.76 30.99 358.55
343.69 37.00 160.00 682.00 1021.08 1.59 47.37 30.07 353.02
341.14 37.00 160.00 682.02 1021.34 1.14 45.78 29.38 349.91

(continued on next page)
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Table C.1 (continued )

OPC Tailings Water Fine Aggregates Coarse Aggregates SP UCS (MPa) Cost ($/m3) CO2 eq. (kg)

346.11 37.22 160.03 681.51 1021.07 1.80 48.03 30.46 355.63
361.51 37.49 160.03 682.01 1025.08 1.76 49.60 31.31 369.82
341.96 37.49 160.04 682.03 1021.33 4.45 50.77 33.40 356.30
340.54 37.49 160.04 681.71 1021.33 4.32 50.48 33.16 354.77
342.83 37.59 160.02 681.55 1028.30 4.44 50.91 33.48 357.23
341.14 40.67 160.02 681.49 1021.16 5.37 51.07 34.45 357.59
340.03 40.78 160.12 681.68 1021.15 1.10 45.42 29.27 349.45
340.67 40.78 160.12 681.68 1025.08 1.10 45.56 29.33 350.11
340.54 40.78 160.01 681.49 1028.56 1.26 46.02 29.54 350.33
342.02 40.78 160.01 681.49 1021.45 1.32 46.56 29.65 351.66
340.54 40.79 160.01 681.70 1028.56 1.27 46.06 29.54 350.34
342.02 40.79 160.01 681.70 1021.26 1.32 46.51 29.65 351.65
340.02 40.79 160.00 681.68 1028.55 1.12 45.52 29.33 349.61
340.54 40.79 160.01 681.70 1028.55 1.33 46.37 29.61 350.44
352.10 40.79 160.01 681.70 1023.64 1.31 47.51 30.23 360.94
343.32 40.83 160.04 682.04 1021.33 1.12 45.90 29.48 352.52
340.10 41.77 160.01 681.67 1025.00 1.32 46.25 29.56 350.12
341.40 41.79 160.08 682.06 1025.01 3.30 49.58 32.01 354.63

Data availability

Data will be made available on request.
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