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Rationale and Objectives: This study aimed to develop and validate machine learning (ML) models utilizing positron emission to
mography (PET)-habitat of the tumor and its peritumoral microenvironment to predict progression-free survival (PFS) in patients with 
clinical stage IA pure-solid non-small cell lung cancer (NSCLC).

Materials and Methods: 234 Patients who underwent lung resection for NSCLC from two hospitals were reviewed. Radiomic features 
were extracted from both intratumoral, peritumoral and habitat regions on PET. Univariate and multivariate logistic regression analyses 
were employed to determine significant clinical variables. Subsequently, a radiomics nomogram was developed by combining the 
radiomics signature with these identified clinical variables. Kaplan–Meier (KM) analysis was performed to investigate the prognostic 
value of the nomogram. Shapley Additive Explanations (SHAP) were used to interpret the ML models.

Results: The combination model which contained peritumoral 5 mm and habitat regions radiomics features, clinical variables obtained 
a strong well-performance, achieving area under the curve (AUC) of 0.905 (95% confidence interval (CI) 0.854–0.957) in the train set and 
0.875 (95% CI 0.789–0.962) in the internal validation set. The radiomics signature was significantly associated with PFS, the model 
significantly discerned high and low-risk patients, and exhibited a significant benefit in the clinical use showed low-risk score given have 
far longer RFS than those with high-risk score (log-rank P ＜ 0.001).

Conclusion: The habitat and peritumoral radiomics signatures serve as an independent biomarker for predicting PFS in patients with 
early-stage NSCLC, effectively stratified survival risk among patients with clinical stage IA pure-solid non-small cell lung cancer.
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Gray-level dependence matrix, SUVmax Maximum standardized uptake value, CEA Carcinoembryonic antigen, SCCA Squamous cell 
carcinoma antigen, NSE Neuron-specific enolase, CYFRA21–1 Cytokeratin 19 fragment, ALB Albumin, WBC White blood cell, MONO 
Monocyte, Lym Lymphocyte, Neu Neutrophil

INTRODUCTION

L ung cancer is the leading cause of cancer-related 
deaths globally and is expected to account for about 
21% of all cancer deaths in 2023 (1). Among them, 

lung adenocarcinoma is the most common subtype of lung 
cancer, accounting for about 50% of all lung cancer cases. (2). 
With the rapid advancement of computed tomography (CT) 
screening technology, an increasing number of non-small 
cell lung cancer (NSCLC) cases are being diagnosed in the 
early stage, especially those in clinical stage IA with tumors 
diameter less than 3 cm (3). Pulmonary nodules are cate
gorized according to the CT consolidation tumor ratio 
(CTR)2 into subsolid nodules (0 ≤ CTR < 1) and pure- 
solid nodules (CTR = 1) (4). Previous studies have de
monstrated that pure-solid nodules, even after standard sur
gical procedures, tent to exhibit more aggressive malignant 
behavior and are associated with poorer prognoses compared 
to subsolid nodules and pure ground-glass opacity no
dules (5,6). Although stage IA pure solid nodules have a 
relatively better prognosis compared to other stages, patients 
still exhibit diverse prognosis following surgical resection, 
and may require different treatment approaches (7,8). 
Therefore, constructing more effective prognostic tools tai
lored specifically for clinical stage IA pure-solid NSCLC is 
warranted.

Advancements in biologic and genomic technologies have 
significantly improved survival estimation by enabling the 
integration of survival-associated biologic and genetic sig
natures (9,10). However, a limitation of these invasive 
methods is their inability to capture comprehensive in
formation about heterogeneous tumors. The radiomics ap
proach involves transforming medical images into 
quantitative data to aid in noninvasive clinical decision- 
making (11). Habitat imaging is an innovative technique for 
tumor characterization, which involves segmenting tumors 
into various subregions for more detailed analysis, provides a 
more precise quantification of heterogeneity within tu
mors (12,13). The peritumoral region of a lesion may possess 
characteristics related to the tumor microenvironment, 
which could be important for enhancing tumor diagnosis and 
predicting prognosis. Traditional machine learning models 
often suffer from a lack of interpretability, resulting in the 
“black box” problem, which poses challenges for clinical 
application. The Shapley Additive Explanations (SHAP) 
method addresses this issue by providing interpretability 
through both global and local explanations, helping to clarify 
the decision-making processes of these models (14,15).

We hypothesized that integrating radiomic features from 
both the habitat and peritumoral regions could improve the 
accuracy of prognosis prediction for pure-solid NSCLC. 
Therefore, this study aimed to develop and validate a 

radiomics signature that utilizes multidimensional features for 
personalized survival risk stratification in patients with stage 
IA pure-solid NSCLC.

METHODS

Patient Cohorts

A total of 234 consecutive patients who underwent lung 
resection confirmed with clinical stage IA pure-solid 
NSCLC were screened in two independent institutions. The 
inclusion criteria were as follows: (I) preoperative PET-CT 
was performed; (II) complete clinical and pathological data; 
(III) clinical stage IA NSCLC (cT1N0M0); (IV) the interval 
less than 30 days between PET-CT examination and surgery; 
(V) pure solid nodules; The exclusion criteria were as fol
lows: (I) poor image quality; (II) lost to follow-up; (III) 
preoperative neoadjuvant and chemotherapy; (IV) biopsy 
and tissue sampling before PET-CT examination. This study 
was approved by the institutional ethics review boards and 
was conducted in accordance with the principles outlined in 
the Declaration of Helsinki. Since this was a retrospective 
study, informed consent was not required. Patients from two 
centers were randomly assigned into the training and internal 
validation cohorts at a ratio of 7:3. A flowchart of patient 
selection is shown Figure 1.

Data Collection

Among all the patients, their clinical data (age, sex, smoking 
history); PET metabolic parameters (maximum standardized 
uptake value (SUVmax)); CT imaging features (lobulation, 
spiculation, air-bronchogram, vascular-convergence, pleural 
retraction, tumor location) and blood markers (carcinoem
bryonic antigen (CEA), squamous cell carcinoma antigen 
(SCCA), neuron-specific enolase (NSE), cytokeratin 19 
fragment (CYFRA21–1), albumin (ALB), white blood cell 
(WBC), monocyte (MONO), lymphocyte (Lym),neutrophil 
(Neu)) were recorded.

Follow-up Surveillance

Patients are required to follow-up via chest CT scans every 
6–12 months for the first two years, and subsequently once 
every 12 months thereafter. Disease recurrence was diag
nosed based on suspicious radiologic findings or histologi
cally confirmed disease. The target variable of this study was 
PFS, defined as the period from the PET/CT examination 
date to either the relapse date (event)—encompassing tumor 
recurrence within or adjacent to the treated area, mediastinal 
relapse, distant relapse, or death—or the last date the patient 
was confirmed to be relapse-free (censored), and the last 
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follow-up occurred in June 2024. The minimum follow-up 
duration to ascertain PFS was set at 48 months following the 
initial CT study, with the maximum follow-up extending to 
113 months.

The optimal cutoff value for the signature was determined 
using the X-tile program based on its association with sur
vival outcomes (16). Patients were then classified into low- 
and high-risk groups, and their survival outcomes were 
compared using Kaplan–Meier analysis and log-rank tests. 
Multivariable analyses were conducted to identify in
dependent prognostic risk factors.

PET/CT Image Acquisition

The patients received an intravenous injection of 18F-FDG 
(3.7 MBq/kg) after fasting for at least 6 h. Blood glucose 
level was maintained below ML/dl. Approximately 60 min 
later, images were acquired using a hybrid PET/CT scanner 
(GEMINI TF 64, Philips, Netherlands). A low dose, un
enhanced CT scan, spanning from the skull base to the 
middle of the thighs, was conducted using specific para
meters: 120 kV, 80 mA, pitch of 0.829, and reconstruction 
thickness and interval of 5.0 mm. Subsequently, a 3D model 
was utilized to generate PET images. The imaging para
meters included a field of view of 576 mm, a matrix size of 
144 × 144, slice thickness and interval of 5 mm, and an 
emission scan time of 1.5 min for each bed position. PET 
images with CT attenuation correction were reconstructed 
using the time-of-flight algorithm.

Image Segmentation and Preprocessing

The workflow of radiomics is shown in Figure 2. In order to 
enhance the robustness of radiomic features and ensure their 
suitability for further analysis, image preprocessing was 
conducted prior to segmentation and feature extraction, 

addressing the variations of PET/CT scans used in this study. 
Image preprocessing involved isotropic spatial resampling, 
where 2 mm spatial resampling had a smaller impact on the 
calculation of radiomic features compared to 1 mm and 
4 mm resampling (17). All patients' PET images were re
sampled to 2 mm in the X, Y, and Z directions. Intensity 
discretization and rescaling were automatically performed by 
the software. The regions of interest (ROI) were segmented 
using LIFEx (18) software (https://www.lifexsoft.org/). 
Based on the metabolic threshold of PET images, we were 
able to rapidly delineate the tumor contour.

The region of interest for the tumor was semi-auto
matically delineated layer by layer by using 3D plotting tools 
without prior knowledge of the patient’s clinical data and 
mutational status. To evaluate the robustness of the seg
mentation process, 50 patients were randomly selected for 
segmentation by two radiologists.

Peritumoral Regions Dilation and Habitat Generation

After segmentation, peritumoral masks were created using 
morphologic dilation. Various peritumoral regions were 
examined by setting dilation intervals of 1 mm, 3 mm, and 
5 mm to evaluate their effects on the model's predictive 
performance, including PERI1mm, PERI3mm, and 
PERI5mm. Bronchi, large vessels, and normal tissue were 
manually excluded. Local features, including local entropy 
and energy values, were extracted by analyzing each voxel 
within the specified volume of interest (VOI). These features 
were then clustered into subregions using the K-means 
method, resulting in the formation of multiple distinct ha
bitats. The number of habitats tested ranged from 2 to 10, 
and the optimal k-value was determined using the Consensus 
Cluster method. The process of habitat generation and the 
specific features are illustrated in Figure 3.

Figure 1. Proceeding flow of enrollment.
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Feature Extraction and Selection

All features were extracted with the Pyradiomics tool. The 
extracted radiomic features were divided into seven cate
gories: shape features, first-order statistics, Gray-level co- 
occurrence matrix (GLCM) features, Gray-level size zone 
matrix (GLSZM) features, Gray-level run length matrix 
(GLRLM) features, neighboring gray tone difference matrix 
(NGTDM) features, and Gray-level dependence matrix 
(GLDM) features.

Intraclass correlation coefficients were calculated for le
sions segmented by multiple radiologists. For feature selec
tion, the imaging features were standardized using Z-score 
normalization to adjust the data to a mean of zero and a 
variance of one. When the correlation between features 
exceeded the threshold of 0.9, only one feature from each 
highly correlated pair was retained to eliminate redundancy. 
Finally, a two-sample T-test and the least absolute shrinkage 
and selection operator (LASSO) regression model were 

applied to further refine the selected features in the training 
dataset.

Development and Validation of Machine Learning 
Models

Among the range of machine learning models, we selected light 
gradient boosting machine (LightGBM) construct radiomics 
signatures for intratumoral, peritumoral, and habitat regions, 
derived from the final feature set. It utilizes an innovative tech
nique known as histogram-based binning, allowing for more 
efficient learning compared to other algorithms. While tree- 
based models like XGBoost construct trees using a level-wise 
growth approach, LightGBM adopts a leaf-wise growth strategy 
instead of the traditional level-wise method to build its trees (19). 
The SHAP explanation was used to measure each feature's im
portance to the machine learning model. The SHAP value's 
magnitude indicates its contribution to the prediction, and its sign 
denotes whether the effect is positive or negative.

Figure 2. Workflow of necessary steps on PET images.

Figure 3. The generated habitat regions and specific characteristics are presented.

XUE ET AL  Academic Radiology, Vol 32, No 6, June 2025 

3690 3690



Statistical Analyses

Data analyses were performed using Python (version 3.7.3, 
https://www.python.org), R (version 4.3.0, https://www.r- 
project.org), and SPSS Statistical (Version 22.0, https:// 
www.ibm.com/spss) Software. Continuous numerical vari
ables were compared using the Mann–Whitney U test or t 
test. Categorical data were evaluated using chi-square tests or 
Fisher’s exact tests to assess difference between groups. The 
clinical factors that showed statistical significance in the 
univariable analysis were included in a multivariable logistic 
regression to ascertain independent predictors with odds 
ratio (OR) and 95% confidence interval (CI). Receiver 
operating characteristic (ROC) curves were plotted, and the 
area under the curve (AUC), accuracy, sensitivity, and spe
cificity were calculated to evaluate the predictive perfor
mance of different models. The net benefit of the predictive 
models assessed by decision curve analysis (DCA). A two- 
tailed P value < 0.05 was considered statistically significant.

RESULTS

Patient Characteristics

Patients were divided into two groups based on the presence or 
absence of recurrence. The clinicalpathologic characteristics are 
shown in detail in Table 1. In our study, the rates of recurrence 
were found to be 30.06% and 29.58% in the training and va
lidation sets, respectively. Univariate and multifactorial analyses 
of clinical features were performed with OR and corresponding 
P-values calculated for each feature (Table 2). Univariate ana
lysis revealed that sex, air bronchogram, lobulation, spiculation, 
smoking, pleural indentation, differentiation, tumor location 
and SUVmax value were significantly different between the 
recurrence and non-recurrence groups. Multivariate analysis 
revealed that pleural indentation (OR, 1.892; 95% CI, 
1.137–3.152; P = 0.040) and SUVmax(OR, 1.203; 95% CI, 
1.016–1.423; P = 0.021) were independently correlated with 
the recurrence status.

Radiomics Feature Selection and Optimal Signature 
Construction

A total of 107 handcrafted radiomic features were extracted 
across various subsets, features with an intraclass correlation 
coefficient＜ 0.8 or exhibiting minimal variance were ex
cluded to ensure stability and reproducibility, subsequently 
refined using the Lasso method. The optimal k-value, which 
was found to be 3, used as the criterion for determining the 
ideal number of clusters at the population level. Lung cancer 
tumors were classified into three distinct categories: habitat 
1, habitat 2, and habitat 3. The optimal λ values for 
PERI1mm, PERI3mm, and PERI5mm and habitat were 
0.0339, 0.0010, 0.0168, and 0.0262, respectively. These 
optimal λ values resulted in 3, 5, 3, and 4 selected features for 
constructing four radiomics models. After obtaining the 

optimal features, we proceeded to build and compare the 
performances of these different models.

Performance of Different Models

In the train set, several signatures showed strong AUC va
lues, with the highest AUC observed for the habitat sig
nature of 0.888 (95% CI: 0.829–0.948). The AUC values for 
three different settings in the peritumoral regions were 
PERI1mm 0.756 (95% CI: 0.678–0.834), PERI3mm 0.824 
(95% CI: 0.758–0.890), and PERI5mm 0.803 (95% CI: 
0.734–0.872), respectively, while the AUC for Intra was 
0.779 (95% CI: 0.703–0.855). In the validation set, the ha
bitat signature achieved the highest AUC, with a value of 
0.828 (95% CI: 0.729–0.926). The AUC value of the 
PERI5mm signature was 0.827 (95% CI: 0.710–0.943), 
which outperformed the other three radiomic signatures 
(Intra, 0.754; PERI1mm, 0.788; PERI3mm, 0.680). The 
accuracy, sensitivity, specificity, negative predictive value, 
and positive predictive value are listed in Table 3. Selecting 
the peritumoral model with the highest AUC on the test set. 
SUVmax and pleural indentation were identified as an in
dependent factor associated with recurrence and were in
tegrated with representative signatures (PERI5mm, habitat) 
to create a nomogram, with a value of 0.905 (95% CI: 
0.854–0.957) in the train set and 0.875 (95% CI: 
0.789–0.962) in the validation set (Fig 4). The DCA of 
different models in training and validation sets showed that 
nomogram provided a better net benefit than other radio
mics models for the most of the threshold range (Fig 5).

Survival Risk Stratification Based on the Radiomics 
Signature and Model Interpretation

All patients with pure-solid tumors were divided into low- 
risk and high-risk groups based on the optimal cutoff value 
(radiomics score, 0.55) of the radiomics signature determined 
by X-tile. The analysis of the radiomics signature revealed 
that patients with lower scores tended to have better PFS, 
while those with higher scores were associated with an in
creased risk of recurrence. The radiomics signature showed a 
significant association with PFS (P = ＜0.0001) in the 
training set. This result was further validated in the validation 
set, where the radiomics signature remained significantly also 
associated with PFS (P = ＜ 0.0001). (Fig 6).

We calculated both the overall and individual Shapley 
values to interpret the combined model and support its 
clinical application. In the overall visualization, the SHAP 
bar chart (Fig 7a) shows the weights of the different char
acteristics (radiomics features, SUVmax, Pleural_indentation) 
of the model. The SUVmax value showed the highest 
weight. The SHAP bees-warm plot (Fig 7b) illustrates the 
positive and negative impacts of each feature on the pre
diction probability, represented by yellow and purple, re
spectively. The SHAP effort plot (Fig 7c/d) shows each 
feature’s positive and negative effects on predictive outcomes 
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in a single case. The features in red increase output while the 
features in blue do the opposite.

DISCUSSION

The PET-radiomics based model for the estimation of PFS in 
patients with clinical stage IA pure-solid NSCLC, particu
larly through habitat and peritumoral regions analysis, en
hances our understanding of tumor heterogeneity and 
improves the prediction of survival outcomes. Notably, the 
radiomics nomogram outperformed traditional clinical fac
tors, could therefore allow risk stratification of patients 
highlighting its enhanced utility in providing individualized 
PFS predictions for early-stage NSCLC patients.

In recent years, 18F-FDG PET/CT scan which simulta
neously offers both anatomical and metabolic insights into 
tumors, has garnered significant interest in the evaluation of 
NSCLC and other lung lesions (20,21). There is significant 
variability in the prognoses of patients with NSCLC, em
phasizing the importance of precise survival risk stratification 
for effective treatment planning (22). The identified sig
nature consisted of the following features: original_glcm_ 
ldmn_h1, original_firstorder_Median_h2,Peri5mm_original_ 
firstorder_RobustMeanAbsoluteDeviation,Peri5mm_original_ 
shape_MeshVolume,original_shape_VoxelVolume_h2, Peri5
mm_original_shape_VoxelVolume and original_shape_ 
Sphericity_h1, which are similar to the results of recent studies 
of risk stratification (23,24).

Radiomics, a high-throughput quantitative analysis tech
nique, demonstrates significant potential in the field of 
NSCLC (25). Increasing studies have shown that habitat 
radiomics could be used to develop diagnostic or prognostic 
cancer biomarkers. Zhang et al. (26) reported that habitat 
imaging allows for the quantification and visualization of 
various subregions within the tumor, which noninvasively 
and preoperatively determined the microvascular invasion of 
hepatocellular carcinoma with high accuracy. Wu et al. (27)
demonstrated that habitat radiomic features exhibited su
perior predictive ability compared to other individual 
models, showing promising performance in distinguishing 
between EGFR mutant and wild-type cases. Our results also 
underscored the significance of habitat imaging, as it 
achieved the highest AUC value among the different models. 
It is important to note that habitat radiomics combines the 
benefits of conventional radiomics with the analysis of in
tratumoral spatial heterogeneity. And the habitat which 
identified through PET imaging tend to be more hetero
geneous and eccentric, often correlating with a poorer 
prognosis. However, these studies primarily concentrated on 
features that describe the heterogeneity of the tumor's core 
area, overlooking the predictive value of imaging informa
tion obtained from the peritumoral region. Tumor invasion 
into the peripheral region affects the survival outcomes of 
cancer patients and may be indicated by morphologic 
changes. Numerous studies highlight the importance of Ta
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utilizing radiomics techniques to capture information about 
the surrounding regions of tumors (28,29). Shang et al (30)
have demonstrated that derived from tumoral and peritu
moral habitat imaging could help predict lung adenocarci
noma invasiveness. We have used radiomic features to find 

that the peritumoral regions have a potential predictive 
ability for the prediction of the recurrence status, with the 
PERI5mm signature having the best performance.

Unlike previous prognostic studies, which predominantly 
analyzed patients across all stages of the disease, our current 

TABLE 2. Univariable and Multivariable Logistic Regression Analysis of Factors in the Training Cohort 

characteristic Univariate logistic Multivariate logistic

Odds Ratio (95%CI) P Odds Ratio (95%CI) P

Sex 0.405 (0.290–0.566) ＜0.001 0.943 (0.519–1.713) 0.871
Air-bronchogram 0.462 (0.260–0.820) 0.027 0.875 (0.446–1.719) 0.745
Lobulation 0.494 (0.364–0.672) ＜0.001 1.147 (0.686–1.917) 0.661
Spiculation 0.547 (0.374–0.800) 0.009 1.143 (0.664–1.970) 0.686
Smoking 0.575 (0.374–0.884) 0.034 1.296 (0.668–2.512) 0.519
Pleural_indentation 0.589 (0.430–0.808) 0.006 1.892 (1.137–3.152) 0.040
Differentiation 0.708 (0.635–0.789) ＜0.001 1.257 (0.824–1.917) 0.374
Tumor Location 0.799 (0.742–0.862) ＜0.001 0.492 (0.828–1.142) 0.774
SUVmax 0.936 (0.901–0.972) ＜0.001 1.203 (1.016–1.423) 0.021

CI, confidence interval; SUVmax, maximum standardized uptake value

TABLE 3. Prediction Performance of Radiomics Models in Training Set and Validation Set 

Signature Accuracy AUC 95%Cl Sensitivity Specificity Precision F1 Cohort

Habitat 0.828 0.888 0.829–0.947 0.828 0.842 0.684 0.736 Train
PERl1mm 0.675 0.756 0.678–0.834 0.735 0.649 0.474 0.576 Train
PERI3mm 0.742 0.824 0.758–0.889 0.776 0.728 0.551 0.644 Train
PERl5mm 0.718 0.803 0.733–0.871 0.735 0.711 0.522 0.610 Train
INTRA 0.706 0.779 0.702–0.854 0.694 0.711 0.507 0.586 Train
Habitat 0.789 0.828 0.729–0.926 0.619 0.860 0.650 0.634 Test
PERl1mm 0.718 0.788 0.673–0.903 0.857 0.660 0.514 0.643 Test
PERI3mm 0.620 0.680 0.541–0.817 0.524 0.660 0.393 0.449 Test
PERl5mm 0.817 0.827 0.709–0.943 0.619 0.900 0.722 0.667 Test
INTRA 0.732 0.754 0.626–0.880 0.762 0.720 0.533 0.627 Test

AUC, area under the curve; CI, confidence interval

Figure 4. The ROC curves of the different models in the training set (a) and validation set (b).
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research specifically focuses on patients with early-stage 
disease. It is important to note that survival outcomes 
showed variability, even among patients classified within the 
same clinical stage. In addition, several of earlier studies have 
demonstrated that clinical stage IA NSCLC with a pure-solid 
appearance exhibits relatively invasive oncological char
acteristics (31–33). Therefore, conducting a separate 
radiomic analysis specifically for clinical stage IA pure-solid 
NSCLC is both essential and warranted. The radiomics 
signature successfully stratified patients into high-risk and 
low-risk groups, identifying those who may benefit from 
more intensive treatment approaches. Moreover, the 

prognostic significance of clinical features is undeniable. Our 
efforts to integrate multidimensional and multiregional data 
highlights the significance of intratumor heterogeneity, the 
surrounding tumor microenvironment and clinical status in 
patient stratification.

The primary challenge in the field of radiomics currently 
lies in the interpretability of radiomic features. This study 
utilized SHAP analysis to demonstrate the contribution of 
each feature to the model's performance. SHAP is a widely 
used machine learning technique for gaining insights into the 
complex relationships between features and model predic
tions (34). The SHAP bar chart indicated SUVmax was 

Figure 5. The decision curve analysis for the different models in training (a) and validation (b) sets showed that nomogram provided a 
better net benefit than other radiomics models for the most of the threshold range.

Figure 6. The KM survival curves of recurrence-free survival in patients between the two groups separated by low- and high-risk groups in 
training (a) and validation (b) sets.
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Figure 7. Overall visualization of the model through SHAP. The SHAP bar chart shows the weight of the different characteristics in the model (a). 
The SHAP bees-warm plot shows the positive or negative effects of each feature on the prediction probability through yellow and purple colors (b). 
The SHAP force plot shows the impact process of each significant features on the final predicted probability. A 75-year-old male with clinical stage 
IA3 NSCLC has a lower predicted 5-year survival of 48.4%, matched by actual survival at 33 months (c). A 48-year-old female with clinical IA2 
NSCLC shows a high predicted 5-year survival of 91.8%, with actual survival more than 98 months (d).(Color version of figure is available online.)
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identified as the most important feature of the model, this 
finding is consistent with current studies (35,36), SUVmax 
was the most significant predictor of local recurrence. In two 
examples, the SHAP explanation clearly showed the con
tribution of each feature to the predicted value. Despite the 
model's complexity and intricate interactions, the SHAP 
explanation proved valuable in enhancing the reliability of 
the predicted results (4).

As the first study (to our knowledge) performed with a 
habitat and peritumoral signature in survival estimation for 
patients with early-stage NSCLC, our study demonstrated 
that the combined nomogram achieved superior prognostic 
performance than either the single radiomics model or the 
clinical model alone, with a positive net reclassification im
provement. However, several limitations exist in our study. 
Firstly, the study was retrospective and may be subject to 
selection bias; therefore, further validation through pro
spective studies is needed to confirm the clinical applicability 
of these models. Secondly, since our study did not delineate 
CT images, multiple models need to be developed. Thirdly, 
considering that textural features of PET images are sig
nificantly influenced by the acquisition and reconstruction 
methods, variations in scanners could impact the robustness 
of our model's textural feature analysis. To this end, the 
sample size of the study was small, and more prospective 
larger samples and multicenter studies are warranted for 
further validation.

CONCLUSIONS

In conclusion, an effective radiomics signature was con
structed to predict the postoperative survival risk for a spe
cific patient group with pure-solid clinical stage IA non- 
small cell lung cancer. The radiomics nomogram presented 
in this study effectively highlights the added value of in
corporating the radiomics signature alongside clinical risk 
factors for personalized PFS estimation. This tool shows 
promise in guiding individualized postoperative care for 
patients, though further external validation is needed before 
it can be widely adopted in clinical practice.
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