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Explainable PET-Based Habitat and
Peritumoral Machine Learning Model
for Predicting Progression-free
Survival in Clinical Stage |IA Pure-
Solid Non-small Cell Lung Cancer:

A Two-center Study

Bei-Hui Xue, Shuang-Li Chen, Jun-Ping Lan, Li-Li Wang, Jia-Geng Xie, Xiang-wu Zheng,
Liang-Xing Wang', Kun Tang'

Rationale and Objectives: This study aimed to develop and validate machine learning (ML) models utilizing positron emission to-
mography (PET)-habitat of the tumor and its peritumoral microenvironment to predict progression-free survival (PFS) in patients with
clinical stage IA pure-solid non-small cell lung cancer (NSCLC).

Materials and Methods: 234 Patients who underwent lung resection for NSCLC from two hospitals were reviewed. Radiomic features
were extracted from both intratumoral, peritumoral and habitat regions on PET. Univariate and multivariate logistic regression analyses
were employed to determine significant clinical variables. Subsequently, a radiomics nomogram was developed by combining the
radiomics signature with these identified clinical variables. Kaplan—-Meier (KM) analysis was performed to investigate the prognostic
value of the nomogram. Shapley Additive Explanations (SHAP) were used to interpret the ML models.

Results: The combination model which contained peritumoral 5 mm and habitat regions radiomics features, clinical variables obtained
a strong well-performance, achieving area under the curve (AUC) of 0.905 (95% confidence interval (Cl) 0.854-0.957) in the train set and
0.875 (95% CI 0.789-0.962) in the internal validation set. The radiomics signature was significantly associated with PFS, the model
significantly discerned high and low-risk patients, and exhibited a significant benefit in the clinical use showed low-risk score given have
far longer RFS than those with high-risk score (log-rank P < 0.001).

Conclusion: The habitat and peritumoral radiomics signatures serve as an independent biomarker for predicting PFS in patients with
early-stage NSCLC, effectively stratified survival risk among patients with clinical stage IA pure-solid non-small cell lung cancer.
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Gray-level dependence matrix, SUVmax Maximum standardized uptake value, CEA Carcinoembryonic antigen, SCCA Squamous cell
carcinoma antigen, NSE Neuron-specific enolase, CYFRA21-1 Cytokeratin 19 fragment, ALB Albumin, WBC White blood cell, MONO

Monocyte, Lym Lymphocyte, Neu Neutrophil

INTRODUCTION

ung cancer is the leading cause of cancer-related

deaths globally and is expected to account for about

21% of all cancer deaths in 2023 (1). Among them,
lung adenocarcinoma is the most common subtype of lung
cancer, accounting for about 50% of all lung cancer cases. (2).
With the rapid advancement of computed tomography (CT)
screening technology, an increasing number of non-small
cell lung cancer (NSCLC) cases are being diagnosed in the
early stage, especially those in clinical stage IA with tumors
diameter less than 3 c¢cm (3). Pulmonary nodules are cate-
gorized according to the CT consolidation tumor ratio
(CTR)? into subsolid nodules (0 < CTR < 1) and pure-
solid nodules (CTR = 1) (4). Previous studies have de-
monstrated that pure-solid nodules, even after standard sur-
gical procedures, tent to exhibit more aggressive malignant
behavior and are associated with poorer prognoses compared
to subsolid nodules and pure ground-glass opacity no-
dules (5,60). Although stage IA pure solid nodules have a
relatively better prognosis compared to other stages, patients
still exhibit diverse prognosis following surgical resection,
and may require different treatment approaches (7.8).
Therefore, constructing more effective prognostic tools tai-
lored specifically for clinical stage IA pure-solid NSCLC is
warranted.

Advancements in biologic and genomic technologies have
significantly improved survival estimation by enabling the
integration of survival-associated biologic and genetic sig-
natures (9,10). However, a limitation of these invasive
methods is their inability to capture comprehensive in-
formation about heterogeneous tumors. The radiomics ap-
proach involves transforming medical images into
quantitative data to aid in noninvasive clinical decision-
making (11). Habitat imaging is an innovative technique for
tumor characterization, which involves segmenting tumors
into various subregions for more detailed analysis, provides a
more precise quantification of heterogeneity within tu-
mors (12,13). The peritumoral region of a lesion may possess
characteristics related to the tumor microenvironment,
which could be important for enhancing tumor diagnosis and
predicting prognosis. Traditional machine learning models
often suffer from a lack of interpretability, resulting in the
“black box” problem, which poses challenges for clinical
application. The Shapley Additive Explanations (SHAP)
method addresses this issue by providing interpretability
through both global and local explanations, helping to clarify
the decision-making processes of these models (14,15).

We hypothesized that integrating radiomic features from
both the habitat and peritumoral regions could improve the
accuracy of prognosis prediction for pure-solid NSCLC.
Therefore, this study aimed to develop and validate a
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radiomics signature that utilizes multidimensional features for
personalized survival risk stratification in patients with stage
IA pure-solid NSCLC.

METHODS
Patient Cohorts

A total of 234 consecutive patients who underwent lung
resection confirmed with clinical stage IA pure-solid
NSCLC were screened in two independent institutions. The
inclusion criteria were as follows: (I) preoperative PET-CT
was performed; (II) complete clinical and pathological data;
(III) clinical stage IA NSCLC (¢cT1NOMO); (IV) the interval
less than 30 days between PET-CT examination and surgery;
(V) pure solid nodules; The exclusion criteria were as fol-
lows: (I) poor image quality; (II) lost to follow-up; (III)
preoperative neoadjuvant and chemotherapy; (IV) biopsy
and tissue sampling before PET-CT examination. This study
was approved by the institutional ethics review boards and
was conducted in accordance with the principles outlined in
the Declaration of Helsinki. Since this was a retrospective
study, informed consent was not required. Patients from two
centers were randomly assigned into the training and internal
validation cohorts at a ratio of 7:3. A flowchart of patient
selection is shown Figure 1.

Data Collection

Among all the patients, their clinical data (age, sex, smoking
history); PET metabolic parameters (maximum standardized
uptake value (SUVmax)); CT imaging features (lobulation,
spiculation, air-bronchogram, vascular-convergence, pleural
retraction, tumor location) and blood markers (carcinoem-
bryonic antigen (CEA), squamous cell carcinoma antigen
(SCCA), neuron-specific enolase (NSE), cytokeratin 19
fragment (CYFRA21-1), albumin (ALB), white blood cell
(WBC), monocyte (MONO), lymphocyte (Lym),neutrophil
(Neu)) were recorded.

Follow-up Surveillance

Patients are required to follow-up via chest CT scans every
6—12 months for the first two years, and subsequently once
every 12 months thereafter. Disease recurrence was diag-
nosed based on suspicious radiologic findings or histologi-
cally confirmed disease. The target variable of this study was
PES, defined as the period from the PET/CT examination
date to either the relapse date (event)—encompassing tumor
recurrence within or adjacent to the treated area, mediastinal
relapse, distant relapse, or death—or the last date the patient
was confirmed to be relapse-free (censored), and the last
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Patients who underwent radical surgical resection and were
diagnosed with clinical IA lung adenocarcinoma in hospital 1
between February 2015 to June 2020
N=426

Patients who underwent radical surgical resection and were
diagnosed with clinical IA lung adenocarcinoma in hospital 2
between May 2018 to August 2020
N=67

Those patients were excluded:

* poor image quality(n=64)

* Pure ground glass nodules(n= 37)

* preoperative neoadjuvant and
chemotherapy (n=52)

* biopsy and tissue sampling before PET-CT
examination(n=54)

Preperative standard PET/CT available
N=219

Those patients were excluded:

* poor image quality(n=20)

* Pure ground glass nodules(n=5)

* preoperative neoadjuvant and
chemotherapy (n=8)

* biopsy and tissue sampling before PET-
CT examination(n=19)

Preperative standard PET/CT available
N=15

Training and internal validation set:
Recurrence(+) :N=70
Non-recurrence(-) : N=164

Figure 1. Proceeding flow of enroliment.

follow-up occurred in June 2024. The minimum follow-up
duration to ascertain PFS was set at 48 months following the
initial CT study, with the maximum follow-up extending to
113 months.

The optimal cutoff value for the signature was determined
using the X-tile program based on its association with sur-
vival outcomes (16). Patients were then classified into low-
and high-risk groups, and their survival outcomes were
compared using Kaplan—Meier analysis and log-rank tests.
Multivariable analyses were conducted to identify in-
dependent prognostic risk factors.

PET/CT Image Acquisition

The patients received an intravenous injection of BE_FDG
(3.7 MBq/kg) after fasting for at least 6 h. Blood glucose
level was maintained below ML/dl. Approximately 60 min
later, images were acquired using a hybrid PET/CT scanner
(GEMINI TF 64, Philips, Netherlands). A low dose, un-
enhanced CT scan, spanning from the skull base to the
middle of the thighs, was conducted using specific para-
meters: 120kV, 80 mA, pitch of 0.829, and reconstruction
thickness and interval of 5.0 mm. Subsequently, a 3D model
was utilized to generate PET images. The imaging para-
meters included a field of view of 576 mm, a matrix size of
144 X 144, slice thickness and interval of 5mm, and an
emission scan time of 1.5 min for each bed position. PET
images with CT attenuation correction were reconstructed
using the time-of-flight algorithm.

Image Segmentation and Preprocessing

The workflow of radiomics is shown in Figure 2. In order to
enhance the robustness of radiomic features and ensure their
suitability for further analysis, image preprocessing was
conducted prior to segmentation and feature extraction,

addressing the variations of PET/CT scans used in this study.
Image preprocessing involved isotropic spatial resampling,
where 2 mm spatial resampling had a smaller impact on the
calculation of radiomic features compared to 1mm and
4 mm resampling (17). All patients' PET images were re-
sampled to 2mm in the X, Y, and Z directions. Intensity
discretization and rescaling were automatically performed by
the software. The regions of interest (ROI) were segmented
using LIFEx (18) software (https://www.lifexsoft.org/).
Based on the metabolic threshold of PET images, we were
able to rapidly delineate the tumor contour.

The region of interest for the tumor was semi-auto-
matically delineated layer by layer by using 3D plotting tools
without prior knowledge of the patient’s clinical data and
mutational status. To evaluate the robustness of the seg-
mentation process, 50 patients were randomly selected for
segmentation by two radiologists.

Peritumoral Regions Dilation and Habitat Generation

After segmentation, peritumoral masks were created using
morphologic dilation. Various peritumoral regions were
examined by setting dilation intervals of 1 mm, 3 mm, and
5mm to evaluate their effects on the model's predictive
including PERI1mm, PERI3mm, and
PERI5mm. Bronchi, large vessels, and normal tissue were

performance,

manually excluded. Local features, including local entropy
and energy values, were extracted by analyzing each voxel
within the specified volume of interest (VOI). These features
were then clustered into subregions using the K-means
method, resulting in the formation of multiple distinct ha-
bitats. The number of habitats tested ranged from 2 to 10,
and the optimal k-value was determined using the Consensus
Cluster method. The process of habitat generation and the
specific features are illustrated in Figure 3.
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Figure 2. Workflow of necessary steps on PET images.

Feature Extraction and Selection

All features were extracted with the Pyradiomics tool. The
extracted radiomic features were divided into seven cate-
gories: shape features, first-order statistics, Gray-level co-
occurrence matrix (GLCM) features, Gray-level size zone
matrix (GLSZM) features, Gray-level run length matrix
(GLRLM) features, neighboring gray tone difference matrix
(NGTDM) features, and Gray-level dependence matrix
(GLDM) features.

Intraclass correlation coefficients were calculated for le-
sions segmented by multiple radiologists. For feature selec-
tion, the imaging features were standardized using Z-score
normalization to adjust the data to a mean of zero and a
variance of one. When the correlation between features
exceeded the threshold of 0.9, only one feature from each
highly correlated pair was retained to eliminate redundancy.
Finally, a two-sample T-test and the least absolute shrinkage
and selection operator (LASSO) regression model were

’»
"~

Habitat Generation

applied to further refine the selected features in the training
dataset.

Development and Validation of Machine Learning
Models

Among the range of machine learning models, we selected light
gradient boosting machine (LightGBM) construct radiomics
signatures for intratumoral, peritumoral, and habitat regions,
derived from the final feature set. It utilizes an innovative tech-
nique known as histogram-based binning, allowing for more
efficient learning compared to other algorithms. While tree-
based models like XGBoost construct trees using a level-wise
growth approach, LightGBM adopts a leaf~wise growth strategy
instead of the traditional level-wise method to build its trees (19).
The SHAP explanation was used to measure each feature's im-
portance to the machine learning model. The SHAP value's
magnitude indicates its contribution to the prediction, and its sign
denotes whether the effect is positive or negative.

Origin_firstorder Entropy Origin glem differenceVariance Origin_glrlm LongRunEmpasis Origin_ngtdm_strength

Figure 3. The generated habitat regions and specific characteristics are presented.
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Statistical Analyses

Data analyses were performed using Python (version 3.7.3,
https://www.python.org), R (version 4.3.0, https://www.r-
project.org), and SPSS Statistical (Version 22.0, https://
www.ibm.com/spss) Software. Continuous numerical vari-
ables were compared using the Mann—Whitney U test or t
test. Categorical data were evaluated using chi-square tests or
Fisher’s exact tests to assess difference between groups. The
clinical factors that showed statistical significance in the
univariable analysis were included in a multivariable logistic
regression to ascertain independent predictors with odds
ratio (OR) and 95% confidence interval (CI). Receiver
operating characteristic (ROC) curves were plotted, and the
area under the curve (AUC), accuracy, sensitivity, and spe-
cificity were calculated to evaluate the predictive perfor-
mance of different models. The net benefit of the predictive
models assessed by decision curve analysis (DCA). A two-
tailed P value < 0.05 was considered statistically significant.

RESULTS
Patient Characteristics

Patients were divided into two groups based on the presence or
absence of recurrence. The clinicalpathologic characteristics are
shown in detail in Table 1. In our study, the rates of recurrence
were found to be 30.06% and 29.58% in the training and va-
lidation sets, respectively. Univariate and multifactorial analyses
of clinical features were performed with OR and corresponding
P-values calculated for each feature (Table 2). Univariate ana-
lysis revealed that sex, air bronchogram, lobulation, spiculation,
smoking, pleural indentation, differentiation, tumor location
and SUVmax value were significantly different between the
recurrence and non-recurrence groups. Multivariate analysis
revealed that pleural indentation (OR, 1.892; 95% CI,
1.137-3.152; P = 0.040) and SUVmax(OR, 1.203; 95% CI,
1.016-1.423; P = 0.021) were independently correlated with
the recurrence status.

Radiomics Feature Selection and Optimal Signature
Construction

A total of 107 handcrafted radiomic features were extracted
across various subsets, features with an intraclass correlation
coefficient < 0.8 or exhibiting minimal variance were ex-
cluded to ensure stability and reproducibility, subsequently
refined using the Lasso method. The optimal k-value, which
was found to be 3, used as the criterion for determining the
ideal number of clusters at the population level. Lung cancer
tumors were classified into three distinct categories: habitat
1, habitat 2, and habitat 3. The optimal A values for
PERIImm, PERI3mm, and PERI5mm and habitat were
0.0339, 0.0010, 0.0168, and 0.0262, respectively. These
optimal A values resulted in 3, 5, 3, and 4 selected features for
constructing four radiomics models. After obtaining the

optimal features, we proceeded to build and compare the
performances of these different models.

Performance of Different Models

In the train set, several signatures showed strong AUC va-
lues, with the highest AUC observed for the habitat sig-
nature of 0.888 (95% CI: 0.829-0.948). The AUC values for
three different settings in the peritumoral regions were
PERI1mm 0.756 (95% CI: 0.678—0.834), PERI3mm 0.824
(95% CI: 0.758-0.890), and PERI5mm 0.803 (95% CI:
0.734-0.872), respectively, while the AUC for Intra was
0.779 (95% CI: 0.703-0.855). In the validation set, the ha-
bitat signature achieved the highest AUC, with a value of
0.828 (95% CI: 0.729-0.926). The AUC value of the
PERISmm signature was 0.827 (95% CI: 0.710-0.943),
which outperformed the other three radiomic signatures
(Intra, 0.754; PERI1mm, 0.788; PERI3mm, 0.680). The
accuracy, sensitivity, specificity, negative predictive value,
and positive predictive value are listed in Table 3. Selecting
the peritumoral model with the highest AUC on the test set.
SUVmax and pleural indentation were identified as an in-
dependent factor associated with recurrence and were in-
tegrated with representative signatures (PERI5mm, habitat)
to create a nomogram, with a value of 0.905 (95% CI:
0.854-0.957) in the train set and 0.875 (95% CI:
0.789-0.962) in the validation set (Fig 4). The DCA of
different models in training and validation sets showed that
nomogram provided a better net benefit than other radio-
mics models for the most of the threshold range (Fig 5).

Survival Risk Stratification Based on the Radiomics
Signature and Model Interpretation

All patients with pure-solid tumors were divided into low-
risk and high-risk groups based on the optimal cutoft value
(radiomics score, 0.55) of the radiomics signature determined
by X-tile. The analysis of the radiomics signature revealed
that patients with lower scores tended to have better PFS,
while those with higher scores were associated with an in-
creased risk of recurrence. The radiomics signature showed a
significant association with PES (P = <0.0001) in the
training set. This result was further validated in the validation
set, where the radiomics signature remained significantly also
associated with PES (P = < 0.0001). (Fig 0).

We calculated both the overall and individual Shapley
values to interpret the combined model and support its
clinical application. In the overall visualization, the SHAP
bar chart (Fig 7a) shows the weights of the different char-
acteristics (radiomics features, SUVmax, Pleural_indentation)
of the model. The SUVmax value showed the highest
weight. The SHAP bees-warm plot (Fig 7b) illustrates the
positive and negative impacts of each feature on the pre-
diction probability, represented by yellow and purple, re-
spectively. The SHAP effort plot (Fig 7c¢/d) shows each
feature’s positive and negative effects on predictive outcomes
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Table 1 (Continued)

71)

Validation set (n

163)

Train set (n

P

21)

recurrence (n

50)

non-recurrence (n

P

49)

= 114) recurrence (n =

non-recurrence (n

Characteristic

0.370

1.000

Vascular-convergence

16(76.19%)

44(88.00%)

39(79.59%)

92(80.70%)

No

5(23.81%)

22(19.30%) 10(20.41%) 6(12.00%)

Yes
Pleural retraction

0.075

0.175

5(23.81%)

25(50.00%)

22(44.90%)

66(57.89%)

No

16(76.19%)

25(50.00%)

27(55.10%)

48(42.11%)

Yes
SUVmax

0.004

7.19 [5.11, 10.54]

2.95 [1.60, 5.32]

<0.001
<0.001

6.42 [4.21, 8.65]

4.66[2.80, 6.20]

<0.001

29.24[19.00, 39.50]

68.66[54.00, 81.75]

28.45[13.00, 39.75]

69.05[56.00, 80.25]

Recurrence-free time (mo)

ALB, albumin; CEA, carcinoembryonic antigen; CYFRA21-1, cytokeratin 19 fragment; Lym, lymphocyte; MONO, monocyte; Neu, neutrophil; NSE, neuron-specific enolase; SUVmax,

maximum standardized uptake value; SCCA, squamous cell carcinoma antigen; WBC, white blood cell

in a single case. The features in red increase output while the
features in blue do the opposite.

DISCUSSION

The PET-radiomics based model for the estimation of PES in
patients with clinical stage IA pure-solid NSCLC, particu-
larly through habitat and peritumoral regions analysis, en-
hances our understanding of tumor heterogeneity and
improves the prediction of survival outcomes. Notably, the
radiomics nomogram outperformed traditional clinical fac-
tors, could therefore allow risk stratification of patients
highlighting its enhanced utility in providing individualized
PFS predictions for early-stage NSCLC patients.

In recent years, '"F-FDG PET/CT scan which simulta-
neously offers both anatomical and metabolic insights into
tumors, has garnered significant interest in the evaluation of
NSCLC and other lung lesions (20,21). There is significant
variability in the prognoses of patients with NSCLC, em-
phasizing the importance of precise survival risk stratification
for effective treatment planning (22). The identified sig-
nature consisted of the following features: original_glem_
ldmn_h1, original_firstorder_Median_h2,Peri5mm_original _
firstorder_R obustMeanAbsoluteDeviation,Peri5mm_original_
shape_MeshVolume,original_shape_VoxelVolume_h2, Peri5-
mm_original_shape_VoxelVolume and
Sphericity_h1, which are similar to the results of recent studies
of risk stratification (23,24).

Radiomics, a high-throughput quantitative analysis tech-

original_shape_

nique, demonstrates significant potential in the field of
NSCLC (25). Increasing studies have shown that habitat
radiomics could be used to develop diagnostic or prognostic
cancer biomarkers. Zhang et al. (26) reported that habitat
imaging allows for the quantification and visualization of
various subregions within the tumor, which noninvasively
and preoperatively determined the microvascular invasion of
hepatocellular carcinoma with high accuracy. Wu et al. (27)
demonstrated that habitat radiomic features exhibited su-
perior predictive ability compared to other individual
models, showing promising performance in distinguishing
between EGFR mutant and wild-type cases. Our results also
underscored the significance of habitat imaging, as it
achieved the highest AUC value among the different models.
It is important to note that habitat radiomics combines the
benefits of conventional radiomics with the analysis of in-
tratumoral spatial heterogeneity. And the habitat which
identified through PET imaging tend to be more hetero-
geneous and eccentric, often correlating with a poorer
prognosis. However, these studies primarily concentrated on
features that describe the heterogeneity of the tumor's core
area, overlooking the predictive value of imaging informa-
tion obtained from the peritumoral region. Tumor invasion
into the peripheral region affects the survival outcomes of
cancer patients and may be indicated by morphologic
changes. Numerous studies highlight the importance of
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TABLE 2. Univariable and Multivariable Logistic Regression Analysis of Factors in the Training Cohort

characteristic

Univariate logistic

Multivariate logistic

Odds Ratio (95%Cl) P Odds Ratio (95%Cl) P
Sex 0.405 (0.290-0.566) <0.001 0.943 (0.519-1.713) 0.871
Air-bronchogram 0.462 (0.260-0.820) 0.027 0.875 (0.446-1.719) 0.745
Lobulation 0.494 (0.364-0.672) <0.001 1.147 (0.686-1.917) 0.661
Spiculation 0.547 (0.374-0.800) 0.009 1.143 (0.664-1.970) 0.686
Smoking 0.575 (0.374-0.884) 0.034 1.296 (0.668-2.512) 0.519
Pleural_indentation 0.589 (0.430-0.808) 0.006 1.892 (1.137-3.152) 0.040
Differentiation 0.708 (0.635-0.789) <0.001 1.257 (0.824-1.917) 0.374
Tumor Location 0.799 (0.742-0.862) <0.001 0.492 (0.828-1.142) 0.774
SUVmax 0.936 (0.901-0.972) <0.001 1.203 (1.016-1.423) 0.021
Cl, confidence interval; SUVmax, maximum standardized uptake value
TABLE 3. Prediction Performance of Radiomics Models in Training Set and Validation Set
Signature Accuracy AUC 95%CI Sensitivity Specificity Precision F1 Cohort
Habitat 0.828 0.888 0.829-0.947 0.828 0.842 0.684 0.736 Train
PERIMmm 0.675 0.756 0.678-0.834 0.735 0.649 0.474 0.576 Train
PERI3mm 0.742 0.824 0.758-0.889 0.776 0.728 0.551 0.644 Train
PERISmm 0.718 0.803 0.733-0.871 0.735 0.711 0.522 0.610 Train
INTRA 0.706 0.779 0.702-0.854 0.694 0.711 0.507 0.586 Train
Habitat 0.789 0.828 0.729-0.926 0.619 0.860 0.650 0.634 Test
PERIMTmm 0.718 0.788 0.673-0.903 0.857 0.660 0.514 0.643 Test
PERI3mm 0.620 0.680 0.541-0.817 0.524 0.660 0.393 0.449 Test
PERI5Smm 0.817 0.827 0.709-0.943 0.619 0.900 0.722 0.667 Test
INTRA 0.732 0.754 0.626-0.880 0.762 0.720 0.533 0.627 Test

AUC, area under the curve; Cl, confidence interval

utilizing radiomics techniques to capture information about
the surrounding regions of tumors (28,29). Shang et al (30)
have demonstrated that derived from tumoral and peritu-

moral habitat imaging could help predict lung adenocarci-

noma invasiveness. We have used radiomic features to find

Model AUC

that the peritumoral regions have a potential predictive
ability for the prediction of the recurrence status, with the
PERI5mm signature having the best performance.

Unlike previous prognostic studies, which predominantly

analyzed patients across all stages of the disease, our current

Model AUC

i = clinical AUC: 0.792 (95%CI 0.721-0.864)
= = ¢ PERISmm AUC: 0.803 (95%CI 0.734-0.872)

wes Habitat AUC: 0.888 (95%CI 0.829-0.948)
Nomogram AUC: 0.905 (95%CI 0.854-0.957)

04 0.6
1 - Specificity

08 1.0

Sensitivity

08

e clinical AUC: 0.656 (95%CI 0.520-0.792)

= =+ PERISmm AUC: 0.827 (95%CI 0.710-0.943)

ws Habitat AUC: 0.828 ( 0.729-0.926)
Nomogram AUC: 0.875 (95%CI 0.789-0.962)

0.4 06
1 - Specificity

0.8 1.0

Figure 4. The ROC curves of the different models in the training set (a) and validation set (b).
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Figure 5. The decision curve analysis for the different models in training (a) and validation (b) sets showed that nomogram provided a
better net benefit than other radiomics models for the most of the threshold range.

a
C-index:0.673, p_value=<0.0001
1.0 — High Risk
— Low Risk
0.9
0.8
0.7
0.6
0.5
04
0.3
0 20 40 60 80 100
timeline
At risk
High Risk 76 56 50 26 7 0
Low Risk 87 82 75 54 21 2

C-index:0.818, p_value=<0.0001
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High Risk 29 24 15 9 3 0
Low Risk 42 41 39 26 10 0

Figure 6. The KM survival curves of recurrence-free survival in patients between the two groups separated by low- and high-risk groups in

training (a) and validation (b) sets.

research specifically focuses on patients with early-stage
disease. It is important to note that survival outcomes
showed variability, even among patients classified within the
same clinical stage. In addition, several of earlier studies have
demonstrated that clinical stage IA NSCLC with a pure-solid
appearance exhibits relatively invasive oncological char-
acteristics  (31-33). Therefore, conducting a separate
radiomic analysis specifically for clinical stage IA pure-solid
NSCLC is both essential and warranted. The radiomics
signature successfully stratified patients into high-risk and
low-risk groups, identifying those who may benefit from
treatment approaches. Moreover, the

more intensive

prognostic significance of clinical features is undeniable. Our
efforts to integrate multidimensional and multiregional data
highlights the significance of intratumor heterogeneity, the
surrounding tumor microenvironment and clinical status in
patient stratification.

The primary challenge in the field of radiomics currently
lies in the interpretability of radiomic features. This study
utilized SHAP analysis to demonstrate the contribution of
each feature to the model's performance. SHAP is a widely
used machine learning technique for gaining insights into the
complex relationships between features and model predic-
tions (34). The SHAP bar chart indicated SUVmax was
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Figure 7. Overall visualization of the model through SHAP. The SHAP bar chart shows the weight of the different characteristics in the model (a).
The SHAP bees-warm plot shows the positive or negative effects of each feature on the prediction probability through yellow and purple colors (b).
The SHAP force plot shows the impact process of each significant features on the final predicted probability. A 75-year-old male with clinical stage
IA3 NSCLC has a lower predicted 5-year survival of 48.4%, matched by actual survival at 33 months (c). A 48-year-old female with clinical I1A2
NSCLC shows a high predicted 5-year survival of 91.8%, with actual survival more than 98 months (d).(Color version of figure is available online.)
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identified as the most important feature of the model, this
finding is consistent with current studies (35,36), SUVmax
was the most significant predictor of local recurrence. In two
examples, the SHAP explanation clearly showed the con-
tribution of each feature to the predicted value. Despite the
model's complexity and intricate interactions, the SHAP
explanation proved valuable in enhancing the reliability of
the predicted results (4).

As the first study (to our knowledge) performed with a
habitat and peritumoral signature in survival estimation for
patients with early-stage NSCLC, our study demonstrated
that the combined nomogram achieved superior prognostic
performance than either the single radiomics model or the
clinical model alone, with a positive net reclassification im-
provement. However, several limitations exist in our study.
Firstly, the study was retrospective and may be subject to
selection bias; therefore, further validation through pro-
spective studies is needed to confirm the clinical applicability
of these models. Secondly, since our study did not delineate
CT images, multiple models need to be developed. Thirdly,
considering that textural features of PET images are sig-
nificantly influenced by the acquisition and reconstruction
methods, variations in scanners could impact the robustness
of our model's textural feature analysis. To this end, the
sample size of the study was small, and more prospective
larger samples and multicenter studies are warranted for
further validation.

CONCLUSIONS

In conclusion, an effective radiomics signature was con-
structed to predict the postoperative survival risk for a spe-
cific patient group with pure-solid clinical stage IA non-
small cell lung cancer. The radiomics nomogram presented
in this study effectively highlights the added value of in-
corporating the radiomics signature alongside clinical risk
factors for personalized PFS estimation. This tool shows
promise in guiding individualized postoperative care for
patients, though further external validation is needed before
it can be widely adopted in clinical practice.
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