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Summary
Background Accurate risk stratification of pulmonary nodules is critical for early lung cancer detection. This study 
aimed to improve malignancy classification and invasiveness prediction using machine learning models integrating 
low-dose computed tomography (LDCT) radiomics and plasma cell-free DNA (cfDNA) fragmentomics.

Methods This multicenter study enrolled 1356 participants across discovery (n = 1147) and external validation (n = 209) 
cohorts. A deep learning-based imaging model processed LDCT scans for automated lung nodule detection and 
malignancy classification. A parallel cfDNA model analyzed four whole-genome fragmentation features: copy number 
variation, fragment size ratio, fragment-based methylation, and mutation context and signature. The two models were 
integrated via a stacked ensemble algorithm. An invasion prediction model evaluated tumor aggressiveness.

Findings The integrated imaging-cfDNA model outperformed individual models, with an AUC of 0.950 (95% CI: 
0.926–0.975) in the internal test set and 0.966 (95% CI: 0.940–0.991) in the external validation. The combined 
model’s specificity increased to 0.60 (95% CI: 0.49–0.71) while maintaining 95% sensitivity, compared to 
specificities of 0.50 (95% CI: 0.41–0.59) and 0.33 (95% CI: 0.23–0.44) at equivalent sensitivity levels for the 
imaging and cfDNA models, respectively. The combined model consistently outperformed the other two models 
across nodule characteristics, with particular improvement for 10–20 mm and pure solid nodules. The invasion 
prediction model stratified lung cancers with an AUC of 0.884 (internal) and 0.880 (external). Prediction scores 
increased stepwise with tumor aggressiveness, from adenocarcinoma in situ to minimally invasive 
adenocarcinoma, and were highest for invasive adenocarcinoma.

Interpretation This multimodal approach enhances pulmonary nodule risk stratification by integrating radiomic and 
molecular biomarkers. The model significantly improves diagnostic accuracy, potentially reducing unnecessary 
procedures while minimizing missed diagnoses, supporting its clinical utility in lung cancer screening.
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Introduction
Lung cancer remains the leading cause of cancer- 
related mortality worldwide, with poor survival rates 
primarily due to late-stage diagnosis.1 Early cancer 
diagnosis provides a unique opportunity for curative 
treatment, and low-dose computed tomography (LDCT) 
has been widely adopted as a screening tool for high- 
risk individuals, significantly reducing lung cancer 
mortality.2–4 While LDCT effectively detects pulmonary 
nodules, differentiating between benign and malignant 
nodules remains a major clinical challenge. According 
to the National Lung Cancer Screening Trial (NLST), 
24.2% of participants had at least one nodule, yet only 
3.6% of these LDCT-detected nodules were malignant.2 

Other studies have also reported high false positive 
rates, with up to 20% of surgically resected nodules and 
38% of biopsied nodules ultimately found to be 
benign.5,6 Additionally, a substantial proportion 
(∼50–76%) of detected nodules are indeterminate, 

leading to unnecessary invasive procedures, patient 
anxiety, and increased healthcare burden. Moreover, 
the interpretation of CT scans is time-consuming, 
labor-intensive, and susceptible to inter- and intra- 
rater variability. Therefore, an automated and accurate 
classification method that supplements existing diag
nostic workflows by evaluating pulmonary nodule ma
lignancy risk would be beneficial for risk stratification 
and clinical decision-making.

In this context, artificial intelligence (AI)-based 
approaches for automated lung nodule detection and 
classification are highly desirable. Most algorithms 
employ a two-step strategy, with a first step to detect 
candidate nodules with a high specificity, followed by a 
second step to reduce false positives.7 Once a nodule is 
detected, measured, and classified, management 
decisions can be determined based on current 
clinical guidelines.8–11 Patients with highly suspicious 
nodules typically undergo histological sampling, 

Research in context

Evidence before this study
We conducted a comprehensive PubMed search using 
combinations of the following keywords: (“lung cancer” OR 
“pulmonary nodule*” OR “lung nodule*”) AND (“computed 
tomography” OR “low-dose CT” OR “imaging” OR 
“radiomic*”) AND (“cell-free DNA” OR “cfDNA” OR “liquid 
biopsy” OR “DNA methylation” OR “fragmentation”) AND 
(“machine learning” OR “deep learning” OR “artificial 
intelligence” OR “predictive model”). Numerous studies have 
investigated the utility of low-dose CT (LDCT) radiomics and 
plasma cell-free DNA (cfDNA) fragmentomics for lung nodule 
classification. However, most multimodal approaches to date 
have primarily focused on integrating LDCT with cfDNA 
methylation profiles. Models that combine LDCT with whole- 
genome fragmentomic features, such as copy number 
variation (CNV), fragment size ratio (FSR), fragment-based 
methylation (FBM), and mutation context and signature 
(MCS), remain limited and insufficiently explored.

Added value of this study
To our knowledge, the DECIPHER-NODL study is the first to 
integrate deep learning-derived LDCT radiomics with a 
cfDNA model encompassing four genome-wide 
fragmentation features (CNV, FSR, FBM, and MCS) via a 
stacked ensemble algorithm. This multimodal model 

demonstrated superior accuracy compared to individual 
imaging or cfDNA models in both internal and external 
validation cohorts. Additionally, we developed a novel 
invasion prediction model that effectively stratifies tumor 
aggressiveness, differentiating adenocarcinoma in situ, 
minimally invasive adenocarcinoma, and invasive 
adenocarcinoma. Our findings highlight the complementary 
value of combining structural imaging features with 
molecular fragmentation signals to overcome key challenges 
in lung nodule classification, particularly for small or 
radiologically ambiguous lesions.

Implications of all the available evidence
Overall, current evidence supports the use of multimodal 
diagnostic strategies to improve early lung cancer detection 
and risk stratification. Our study contributes a robust, non- 
invasive, interpretable, and externally validated model that 
enhances both malignancy classification and tumor 
invasiveness assessment. Clinical integration of such an 
approach has the potential to reduce unnecessary invasive 
procedures, minimize false positives, and facilitate earlier, 
more personalized treatment decisions. The model holds 
particular promise for high-risk populations and clinical 
scenarios where radiologic assessments alone are 
inconclusive.
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fluorodeoxyglucose positron emission tomography 
(FDG-PET), nonsurgical biopsy, or surgical resection, 
whereas those with indeterminate nodules are often 
monitored through serial CT surveillance. Meanwhile, 
cell-free DNA (cfDNA) fragmentomic analysis has 
emerged as a promising liquid biopsy approach, offer
ing insights into tumor-derived genomic alterations for 
early cancer detection. Features such as fragment size 
ratio (FSR),12 copy number variations (CNV),13 methyl
ation patterns,14 and nucleosome positioning15 provide 
valuable cancer signals. However, individual cfDNA 
features often lack sufficient diagnostic accuracy, 
particularly for early-stage cancers. Integrating multiple 
cfDNA fragmentomic features with LDCT-based image 
models holds significant potential to enhance early lung 
cancer detection and risk stratification, addressing 
current diagnostic limitations and improving clinical 
outcomes.

In the DECIPHER-NODL study, we propose a 
machine learning (ML)-based approach to classify lung 
nodule malignancy risk by integrating radiomic fea
tures from LDCT scans with cfDNA fragmentomic 
characteristics. Our model aims to address the limita
tions of current diagnostic methods by improving 
accuracy, reducing unnecessary interventions, and 
providing a robust, non-invasive risk stratification tool. 
By leveraging multi-modal data and advanced compu
tational techniques, our study contributes to the 
growing body of research on AI-assisted lung cancer 
diagnostics and personalized risk assessment.

Methods
Study population analyzed
The discovery cohort consisted of 1147 retrospectively 
collected participants (831 with lung cancer and 316 
with benign nodule) who presented at the First Affili
ated Hospital of Guangzhou Medical University 
between May 16, 2014, and December 10, 2021, with 
positive LDCT findings and surgically confirmed lung 
nodules. The external test cohort (n = 209; 158 with 
lung cancer and 51 with benign nodule) was prospec
tively enrolled at the General Hospital of Eastern 
Theater Command between October 11, 2021, and 
July 11, 2023. Blood samples were collected at each 
patient’s first clinic visit before any systemic treatment. 
All Digital Imaging and Communications in Medicine 
(DICOM) images were recorded onto CDs and sent to 
the central laboratory for image feature extraction. 
Written informed consent was obtained from all 
participants. The study was conducted in accordance 
with the Declaration of Helsinki and was approved by 
the Ethics Committee of the First Affiliated Hospital of 
Guangzhou Medical University (No. 2021-95).

Eligible patients in both cohorts were adults ≥18 
years old. Enrollment was not restricted by smoking 
history or underlying lung disease to capture the full 

spectrum of surgically treated nodules. Standardized 
radiologic criteria based on Lung-RADS (version 1.0) 
were applied to determine whether a definitive diag
nosis could be made based on LDCT.16 Patients were 
included if they had pulmonary nodules primarily 
5–30 mm in diameter on LDCT and surgical interven
tion was clinically anticipated. This included both ma
lignant nodules and high-risk benign nodules that are 
difficult to distinguish from malignancies. All patients 
were required to provide written informed consent and 
have sufficient qualified blood samples available for 
analysis.

Exclusion criteria included pregnancy or lactation, 
confirmed diagnosis of any other cancer, prior cancer 
treatment (surgery, radiotherapy, chemotherapy, targeted 
therapy, or immunotherapy) before blood sampling, 
current febrile illness or inflammatory disease requiring 
treatment within 14 days before blood sampling, history 
of organ transplantation or non-autologous (allogeneic) 
bone marrow or stem cell transplantation, and any con
dition deemed unsuitable for study enrollment by the 
investigator. Representative examples include uncon
trolled cardiovascular disease (e.g., NYHA [New York 
Heart Association] class III-IV heart failure, recent 
myocardial infarction), active infections (e.g., uncon
trolled HIV [human immunodeficiency virus], replicating 
HBV [hepatitis B virus]/HCV [hepatitis C virus]), severe 
autoimmune disorders, long-term high-dose immuno
suppressive therapy, psychiatric or cognitive disorders 
impairing consent or compliance, poor adherence to 
prior clinical protocols, imaging contraindications, or 
laboratory abnormalities beyond protocol thresholds. For 
patients with multiple nodules, only the most suspicious 
nodule was included in the analysis, and all performance 
metrics were computed at the patient level.

Blood sample processing and low-coverage whole- 
genome sequencing
Plasma sample collection, cfDNA extraction, library 
preparation, and WGS were conducted sequentially at a 
clinical testing laboratory certified by the Clinical 
Laboratory Improvement Amendments (CLIA) and 
accredited by the College of American Pathologists 
(CAP) (Nanjing Geneseeq Technology Inc., Nanjing, 
China). Blood samples from the discovery and external 
test cohorts were processed in batches: cfDNA extrac
tion for the discovery cohort was completed in 2021, 
with sequencing finalized in 2024, while all sample 
processing and sequencing for the external test cohort 
were completed in 2023. Importantly, blood samples 
were processed within 48 h, and cfDNA was extracted 
promptly after plasma separation and frozen directly 
at −80 ◦C until use, without any intermediate freeze– 
thaw cycles. In brief, 10 mL of peripheral blood was 
collected from each eligible patient in Streck Cell-free 
DNA BCT tubes (Streck, #218962). Plasma was sepa
rated using a two-step centrifugation protocol: an initial 

Articles

www.thelancet.com Vol 64 November, 2025 3



centrifugation at 1600 g for 10 min at 4 ◦C, followed by 
centrifugation of the supernatant at 16,000 g for 10 min 
at 4 ◦C. cfDNA was extracted immediately after plasma 
separation using the QIAamp Circulating Nucleic Acid 
Kit (Qiagen Cat. No. 55114) and then frozen directly 
at −80 ◦C until use. cfDNA concentration was assessed 
using the dsDNA HS assay kit on a Qubit 3.0 fluo
rometer (Life Technology, US), and quality was deter
mined on the Agilent Bioanalyzer 2100 system (Agilent 
Technologies, Santa Clara, USA). For each sample, 
5–10 ng of cfDNA was used to construct a PCR-free 
WGS library using the KAPA Hyper Prep kit (KAPA 
Biosystems). Libraries were sequenced on the 
DNBSEQ-T7 platform at 5× coverage.

Sequencing data analysis
Raw sequencing data underwent initial quality control 
using Trimmomatic,17 where sequencing adapters and 3’ 
low-quality bases were removed. Duplicated reads were 
filtered using the Picard toolkit (http://broadinstitute. 
github.io/picard/). Clean reads were then mapped to 
the human reference genome (Hg19) using the 
Burrows-Wheeler Aligner (BWA-mem, v0.7.12; https:// 
github.com/lh3/bwa/tree/master/bwakit) with default 
parameters. Samples with coverage less than 3× were 
excluded from downstream analysis due to insufficient 
ability for feature calling.

Imaging model development
To mitigate inter-scanner variability resulting from 
different LDCT devices across centers, all DICOM 
images were resampled to a uniform voxel spacing 
(1.25 mm × 1.0 mm × 1.0 mm) using trilinear 
interpolation for image data and nearest-neighbor 
interpolation for mask data, implemented via the 
MONAI framework (https://docs.monai.io/en/stable/ 
transforms.html#spacingd). This spatial normalization 
ensures that each voxel represents the same physical 
dimension, reducing scanner-dependent bias while 
preserving anatomical fidelity.

Based on these preprocessed and standardized 
images, we performed a two-stage deep learning pipe
line comprising lung nodule detection and benign- 
malignant classification. For nodule detection, the 
process begins with segmentation of the lung region 
from raw CT images using the U-Net (R231) model 
implemented in the Lungmask tool (https://github. 
com/JoHof/lungmask).18 This step isolates the lung 
parenchyma and eliminates interference from extra
thoracic tissues. Image intensity values are truncated to 
the range [−1024, 300] Hounsfield Units (HU) and 
normalized to the [0,1] interval to preserve relevant 
features of the lung parenchyma and nodules.19

For our study, nodule detection was performed using a 
pre-trained 3D RetinaNet model, implemented through 
the MONAI framework (https://github.com/Project- 
MONAI/MONAI),20 using the MONAI lung nodule CT 

detection model available on NVIDIA NGC (https:// 
catalog.ngc.nvidia.com/orgs/nvidia/teams/monaitoolkit/ 
models/monai_lung_nodule_ct_detection). This model 
generated an initial set of nodule candidates, which were 
subsequently manually reviewed and confirmed by an 
experienced radiologist, establishing the ground truth for 
our predictive model. To achieve this, the model was 
trained on the LUNA16 dataset and utilizes a 3D ResNet 
backbone integrated with a feature pyramid network 
(FPN) structure. The anchor generator was configured 
with three base shapes — [[6,8,4], [8,6,5], [10,10,6]] — to 
accommodate nodules of varying sizes. Multiple data 
augmentation strategies were applied during training to 
enhance generalizability, including random rotations 
(±30◦), flipping (50% probability along each axis), scaling 
(0.7–1.4×), and Gaussian noise addition (σ = 0.1). Focal 
Loss (α = 0.25, γ = 2) was adopted as the classification 
loss function, and parameters were updated using the 
stochastic gradient descent (SGD) optimizer (learning 
rate = 1e-2, momentum = 0.9). A learning rate schedule 
with a 10-epoch warm-up followed by stepwise 
decay every 150 epochs (γ = 0.1) was employed. Each 
training batch comprises four image patches of size 
192 × 192 × 80, and training was accelerated via mixed- 
precision computing on an NVIDIA 4090 GPU. The 
training process spans 300 epochs, and the model with 
the best performance on the validation set is retained. 
During model validation, a sliding window inference 
strategy is applied with a window size of 512 × 512 × 208 
and 25% overlap. Non-maximum suppression (NMS) 
with an IoU threshold of 0.22 is used to retain the top 
100 predicted bounding boxes with the highest confi
dence scores. Model performance was primarily evalu
ated using the COCO evaluation metrics, with mean 
average precision (mAP) at IoU = 0.1 as the main 
criterion (Supplementary Material 1).

All detected nodules undergo standardization by 
cropping 3D image patches centered on the nodules’ 
centroid, with a uniform size of 32 × 32 × 32 voxels to 
ensure input consistency. For malignancy classifica
tion, a 3D convolutional neural network (3D CNN) 
model is constructed using the AutoKeras platform 
(http://jmlr.org/papers/v24/20-1355.html), trained on 
an internal dataset. The model employs the Binary 
Focal Cross entropy loss function with a focal factor 
(α = 0.75, γ = 2.0), which increases sensitivity to 
minority classes and emphasizes hard-to-classify sam
ples. Model construction is automated via neural ar
chitecture search (NAS) within the AutoKeras 
framework. The search is configured with a maximum 
of 200 trials, using the area under the curve (AUC) of 
the validation set as the primary selection metric, while 
also monitoring the F1 score. The batch size is fixed at 
16 to accommodate GPU memory constraints. The 
final classifier is selected as the model achieving the 
highest validation AUC among the 200 candidate 
architectures.
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Whole-genome cfDNA fragmentation features
Four cfDNA features related to fragmentation patterns 
were extracted from WGS data: copy number variation 
(CNV), fragment size ratio (FSR), fragment-based 
methylation (FBM), and mutation context and signa
ture (MCS).

Copy number variation (CNV)
The copy number variation (CNV) feature extraction was 
performed using ichorCNA, as previously described by 
Wan et al.13 The genome was segmented into 1 Mb non- 
overlapping bins (2475 total) based on the reference 
genome. Coverage depth for each bin was corrected for GC 
content and compared against the software baseline, after 
which ichorCNA computed the log2 ratio for each bin.

Fragment size ratio (FSR)
The extraction of fragment size ratio (FSR) features 
followed the method introduced by Mathios et al.12 The 
genome was partitioned into 5 Mb non-overlapping 
bins, resulting in 541 bins with an average GC con
tent ≥0.3 and average mappability ≥0.9. Reads shorter 
than 100 bp or longer than 220 bp were filtered out, and 
the remaining short (100–150 bp) and long (151–220 
bp) fragments were standardized and transformed into 
z-scores with a mean of zero and standard deviation of 
1. The ratio of short-to-long fragments was computed 
for each bin.

Mutation context and signature (MCS)
Raw FASTQ files were trimmed and aligned to the hg19 
human reference genome, followed by duplicate read 
removal. Reads were then sorted and indexed into BAM 
files using SAMtools (v1.9), and the average sequencing 
depth was calculated. Unpaired and low-quality reads 
(base quality <30 or mapping quality <40), as well as 
those with alternative alignments or template lengths 
exceeding 300 bp were excluded. Reads mapping to 
repeats or low-complexity regions were masked before 
downstream analyses. Paired reads were retained only 
if they contained at least one mismatch to the reference 
genome at the center of a 3-nt context, where the sub
stitution was concordant between R1 and R2. Insertions 
and deletions were excluded.

Before aggregating single-base substitution (SBS) 
features, rigorous quality filters were applied to remove 
germline mutations and low-quality noise from cfDNA, 
thereby minimizing false positives. Germine mutations 
were filtered using an in-house panel of normals and 
gnomAD (v2.0). Next, a machine learning ensemble 
model,21 consisting of a convolutional neural network 
(CNN) and a multilayer perceptron (MLP), was 
employed to further eliminate low-quality noise and 
generate a high-confidence ctDNA SNV mutation list. 
True labels were assigned to high-confidence ctDNA 
SNV calls in lung cancer patients by comparison to 
high-purity tumor samples and white blood cells, while 

false labels were assigned to cfDNA variant-containing 
fragments from healthy controls processed in the 
same batch and sequenced under the same settings. 
Samples used for ctDNA SNV filtering gold standards 
were excluded from downstream analyses, such as 
cancer vs. non-cancer classification. For modeling, the 
CNN model integrated various fragment-level features, 
including reference genome sequences, SBS patterns, 
fragment length, and quality metrics (e.g., read edit 
distance and position within the read). The MLP model 
classified regional genomic features overlapping with 
mutation-laden fragments, such as replication timing, 
which correlates with mutation frequency. Outputs 
from both the fragment-level CNN and regional MLP 
models were combined in an ensemble framework, 
leveraging spatial genomic context and nucleotide-level 
sequence information to distinguish ctDNA SNVs from 
background cfDNA artifacts.

The final mutation list was used to generate the 
mutation context and signature (MCS) features. By 
incorporating the adjacent upstream and downstream 
nucleotides of each SBS event, classified into six types 
(C > A, C > G, C > T, T > A, T > C, and T > G), a total of 
96 distinct SBS sequence patterns (6 × 4 × 4) were 
defined. The count of each pattern was normalized by 
the mean sequencing depth. The final MCS feature 
comprised a 96-context mutational profile, with contri
butions fitted to COSMIC SBS signatures (ver. 3.3.1, 
GRCh37) using the R package “MutationalPatterns”.

Fragment-based methylation (FBM)
The extraction of fragment-based methylation (FBM) 
features was adapted from Zhou et al.,14 examining 
cleavage patterns around cytosine-phosphate-guanine 
(CpG) sites to reflect the methylation status of cfDNA. 
Theoretically, increased cfDNA cleavage at adjacent 
cytosines indicates methylated CpG sites, whereas 
unmethylated sites exhibit reduced cleavage. Within 
Alu regions, fragment ratios were computed for 8 
patterns where the 5’ end breakpoint is either CGN or 
NCG, along with the CGN/NCG ratio, resulting in 9 
features. Beyond Alu regions, FBM extends to genome- 
wide CGCG sites, where fragment ratios were calcu
lated for 10 patterns based on two categories: CGC and 
NCG (C1) or CGN and GCG (C2), alongside the CGC/ 
NCG and CGN/GCG ratios, contributing an additional 
12 features. In total, 21 FBM features are extracted and 
processed using a Fully Connected Neural Network 
(FCN) to capture intricate relationships within the 
methylation landscape, leveraging the interplay 
between methylation patterns and cfDNA fragmenta
tion to enhance cancer detection, classification, and 
monitoring with high precision.

cfDNA model development
Each cfDNA feature type (CNV, FSP, FBM, and MCS) 
was used as input to construct base models using the 
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H2O AutoML package,22 which integrates four algorithms: 
gradient boosting machine (GBM), generalized linear 
model (GLM), XGBoost, and neural networks. Hyper
parameter tuning was conducted using a random grid 
search approach over a list of candidate values. Model 
performance was evaluated via 5-fold cross-validation, 
where the dataset was split into five subsets, with four 
used for training and one for validation in each iteration. 
Additionally, runtime constraints, ensemble techniques, 
and the use of an independent temporal dataset were 
implemented to enhance model generalizability. For each 
feature type, the four models with the best AUC were 
preserved, and the mean prediction score from these 
models was used as the final classification output.

Stacked ensemble model development
The stacked ensemble model was developed by fitting a 
GLM using scores from both the imaging and cfDNA 
models as two individual covariates. A complete case 
analysis was employed, training the GLM only on par
ticipants with data available for both modalities. To 
optimize performance and reduce overfitting, we used 5- 
fold cross-validation in the training set. In each iteration 
of the 5-fold cross-validation, the entire training cohort 
was divided into five subsets, with stratification based on 
malignancy classification. Each subset was iteratively 
used as the test set, while the remaining four subsets 
served as the training set. For each train-test pair, a lo
gistic regression model was independently trained on 
the training set and evaluated on the corresponding test 
set, and the average performance across the five test sets 
was used as the cross-validation result. Once the cross- 
validation was completed, the final model was locked 
and evaluated in the test sets with all parameters fixed.

The prediction score of the combined model for 
benign-malignant classification was derived using the 
following formula: 

where the image score is the risk score generated by the 
image model, and the cfDNA score is the risk score 
generated by the cfDNA model.

For the invasiveness prediction task, only patients 
with pathologically confirmed lung cancer were included 
in both training and testing, as the goal was to differ
entiate tumor aggressiveness rather than to distinguish 
benign from malignant lesions. The prediction score of 
the invasion-combined model was derived as follows:

Statistical analysis
All statistical analyses were performed using R software 
(v4.3.2). Continuous variables were reported as means 
and ranges, while categorical variables were presented 
as counts. Student’s t-tests or Wilcoxon rank-sum tests 
were used for comparing continuous variables, and 
Chi-square tests or Fisher’s Exact tests were used for 
categorical variables, as appropriate. Receiver operating 
characteristic (ROC) analysis was conducted using the 
“pROC” R package, with AUC values assessing 
discriminatory ability and DeLong’s test used for com
parisons between models. Multiple testing corrections 
within each subgroup were applied using the 
Benjamini-Hochberg method. For proportion-based 
performance metrics, 95% confidence intervals (CIs) 
were derived from the exact binomial distribution. 
Model calibration was assessed using calibration 
curves, calibration intercept, calibration slope, and Brier 
score to evaluate the agreement between predicted 
probabilities and observed outcomes. Decision-curve 
analysis (DCA) was performed to determine the po
tential clinical usefulness of the models across a range 
of threshold probabilities. Net reclassification 
improvement (NRI) and integrated discrimination 
improvement (IDI) were calculated to quantify the in
cremental predictive value of the integrated model 
compared with the imaging-only and cfDNA-only 
models. Bootstrap resampling was used to estimate 
95% CIs for calibration, DCA, NRI, and IDI. The 
stacked model, which integrates both imaging and 
cfDNA features, was designed to identify malignant 
lung nodules for further clinicopathological examina
tion, including PET-CT and tissue biopsy, while 
directing low-risk patients to active LDCT surveillance. 
Therefore, a sensitivity threshold of 95% was set, 
allowing performance comparisons across models. 
Unless otherwise specified, all reported P-values were 

two-tailed, with statistical significance defined as 
P < 0.05.

Ethics approval
The study was approved by the Ethics Committee of the 
First Affiliated Hospital of Guangzhou Medical 
University (Approval number: No. 2021-95; Approval 
date: September 30, 2021). Written informed consent 
was obtained from each patient before sample collection.

Prediction Score=
1

1 + e− (−8.94769160 + 5.49825152 × Image score + 9.99599241 × cfDNA score )

Prediction Score (Invasion) =
1

1 + e− (−12.22995711+14.79213838 × Image score + 4.39406150 × cfDNA score )
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Role of the funding source
The funders of the study had no role in the study 
design, data collection, data analysis, data interpreta
tion, or writing of the report.

Results
Dataset characteristics
We recruited a total of 1356 participants for the devel
opment and evaluation of three models, including 1147 
in the discovery cohort and 209 in the external test 
cohort (Fig. 1; Figures S1 and S2). The discovery cohort 
consisted of 831 lung cancer patients and 316 partici
pants with surgically confirmed benign nodules. Of 
these, 417 participants were used to train the imaging- 
cfDNA combined model (hereafter referred to as the 
“combined model”), while 288 were allocated to the 
internal test set for model performance evaluation 
(Table S1). The combined model was independently 
validated on an external cohort comprising 136 malig
nant and 24 benign nodules. Among the 705 partici
pants in the discovery cohort, 78.1% (550/705) were 
above 50 years old, and approximately half were male. 
About 45% of nodules were subsolid, including 18.4% 
(1330/705) pure GGOs and 25.7% (181/705) part-solid 
nodules. In terms of nodule size, 43.5% (307/705) 
were classified as intermediate (10–20 mm), while large 
(≥20 mm) and small (<10 mm) nodules accounted for 
38.9% and 17.4%, respectively. Overall, 74.1% (522/ 
705) of cases were malignant, whereas 25.9% (183/705) 
were benign. Two-thirds of participants with malignant 

nodules had stage I/II cancer. The external test set 
comprised 160 participants, with 59.4% females and 
40.6% males. The participant demographic and clinical 
characteristics are shown in Table S1.

Performance evaluation of the imaging model
The imaging model, developed using deep learning 
(DL) algorithms for automated nodule detection, lung 
window filtering, and benign-malignant classification, 
demonstrated strong diagnostic accuracy across data
sets (Fig. 1; Fig. 2a; Figures S1 and S3). The baseline 
characteristics of participants used for imaging 
model construction and validation are detailed in 
Table S2. The model achieved an AUC of 0.934 
(95% CI: 0.915–0.951) in the training set, 0.883 (95% 
CI: 0.851–0.915) in the internal test set, and 0.906 (95% 
CI: 0.849–0.963) in the external test set (Fig. 2b). Im
aging scores were significantly higher in malignant 
cases compared to benign nodules across all datasets 
(P < 0.001, Wilcoxon rank-sum test; Fig. 2c). Given that 
the lung nodules were suspicious and surgery was 
anticipated based on LDCT scans, our study prioritized 
high sensitivity to minimize the risk of missed di
agnoses. Using a cutoff value of 0.292 calculated based 
on 95% sensitivity on the training set, the imaging 
model achieved a specificity of 0.50 (56/112) in the in
ternal test set and 0.29 (7/24) in the external test set. 
The lower specificity in the external test set was likely 
influenced by its patient demographics and the limited 
number of benign nodules, which may amplify vari
ance. These findings underscore the need for further 

Discovery cohort
BN: n=316; LC: n=831

External test cohort
Prospective enrollment

Image model
BN: n=300; LC: n=821

cfDNA model
BN: n=197; LC: n=529

CT dicom nodule detected by 3D RetinaNet
Lung window filtered by 3D U-Net

BN and LC distinguished by 3D ResNet50

Randomly split into 6:4

Training cohort
BN: n=188; LC: n=485

Model locked Model validation

cfDNA Fragmentomic feature Generation
(CNV, FSR, FBM, MCS)

GBM, GLM, XGBoost, DL algorithm learning 

Training cohort
BN: n=124; LC: n=314

Internal test cohort
BN: n=73; LC: n=215

Model locked Model validation

Combined model: training
BN: n=110, LC: n=307

External test cohort 
(cfDNA model)

BN: n=41; LC: n=149

External test cohort 
(Image model)

BN: n=24; LC: n=136

External test cohort 
(combined model)

BN: n=24; LC: n=136

Internal test cohort
BN: n=112; LC: n=336

Combined model: evaluation
BN: n=73, LC: n=215

Fig. 1: Flowchart depicting the workflow for developing malignancy prediction models. Abbreviations: BN, benign nodule; LC, lung 
cancer; CT, computed tomography; CNV, copy number variation; FSR, fragment size ratio; FBM, fragment-based methylation; MCS, mutation 
context and signature; GBM, gradient boosting machine; GLM, generalized linear model.
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evaluation in larger cohorts to improve specificity and 
generalizability.

Performance evaluation of the cfDNA model
The cfDNA model was developed based on four whole- 
genome fragmentation features derived from plasma 
ctDNA, including copy number variation (CNV), 
fragment size ratio (FSR), mutation context and signa
ture (MCS), and fragment-based methylation (FBM) 
(Fig. 1; Fig. 3a; Figures S1 and S4). These features were 
selected for their ability to provide comprehensive in
sights into tumor biology by analyzing ctDNA charac
teristics. The baseline characteristics of participants 
used for cfDNA model construction and validation are 
presented in Table S3. The cfDNA model achieved an 
AUC of 0.860 (95% CI: 0.821–0.900) in the training set, 
0.855 (95% CI: 0.807–0.904) in the test set, and 0.858 
(95% CI: 0.791–0.924) in the external set (Fig. 3b). 
cfDNA scores were markedly higher in malignant cases 
compared to benign nodules (P < 0.001; Fig. 3c). Using 
a cutoff value of 0.582 for 95% sensitivity on the 
training set, the model accurately identified 94.0% 
(202/215) and 98.7% (147/149) of malignant nodules, 
while maintaining reasonable specificity across the test 
sets (internal test set: 0.33; external test set: 0.44) 
(Fig. 3d).

Improved malignancy risk assessment via 
combining the imaging and cfDNA models
Theoretically, the imaging model may excel at capturing 
structural and morphological characteristics, while the 
cfDNA model offers molecular insights that can reveal 

genetic changes associated with malignancy. Building 
on previous evaluations of single models, we developed 
an ensemble stacked model that integrates the 
strengths of both models to further improve diagnostic 
accuracy (Fig. 1; Figure S1; Table S4). Our results 
demonstrated that the combined model significantly 
outperformed single-feature models, achieving an AUC 
of 0.952 (95% CI: 0.933–0.971) in the training set, 0.950 
(95% CI: 0.926–0.975) in the internal test set, and 0.966 
(95% CI: 0.940–0.991) in the external test set (Fig. 4a). 
Additionally, the combined model generated prediction 
scores that effectively distinguished between malignant 
and benign nodules (P < 0.001; Fig. 4b). No significant 
differences were observed among benign nodule sub
types (Figure S5). Notably, the specificity improved 
from 0.50 (95% CI: 0.41–0.59) for the imaging model 
and 0.33 (95% CI: 0.23–0.44) for the cfDNA model to 
0.60 (95% CI: 0.49–0.71) for the combined model in 
the internal test set (Fig. 4c). In independent validation, 
the specificity further increased from 0.44 (95% CI: 
0.30–0.59) in the cfDNA model to 0.46 (95% CI: 
0.28–0.65) in the combined model. Calibration analysis 
showed good agreement between predicted and 
observed malignancy probabilities (Figure S6a, b). In 
the internal test set, the intercept was −0.192 (95% 
CI: −0.646 to 0.262), the slope 1.272 (95% CI: 0.968– 
1.577), and the Brier score 0.077 (95% CI: 0.060–0.097). 
In the external test set, the intercept was −0.750 
(95% CI: −1.748 to 0.248), the slope 1.429 (95% CI: 
0.876–1.982), and the Brier score 0.056 (95% CI: 
0.032–0.081). Hosmer–Lemeshow tests were non- 
significant in both cohorts (internal: P = 0.555; 

b c d

a
CT scanning Dicom

Box-related
data I/O and 
augmentation

RetinaNet

ResNet Feature 
pyramid net

Class subnet
box subnet

ROI extraction CNNs

Bengin Nodule

Lung Cancer

Prediction

0.95 (0.92–0.96) 0.58 (0.51–0.65)
0.94 (0.91–0.96) 0.50 (0.41–0.59)
0.96 (0.91–0.98) 0.29 (0.15–0.49)

0.0

0.2

0.4

0.6

0.8

1.0

Sensitivity Specificity

Es
tim

at
e 

(9
5%

 C
I)

Sets Train Internal External

Training: 0.934 (0.915-0.951)
Internal test: 0.883 (0.851-0.915)

S
en

si
tiv

ity

0

0.2

0.4

0.6

0.8

1.0

00.20.40.60.81.0
Specificity

External test: 0.906 (0.849-0.963)

AUC (95% CI)

Imaging model
Training Internal test External test

0.00

0.25

0.50

0.75

1.00
Im

ag
e 

sc
or

e

Benign Cancer Benign Cancer Benign Cancer

P < 0.001 P < 0.001 P < 0.001

0.292

Fig. 2: Construction and evaluation of the imaging model for lung cancer prediction. (a) Workflow for constructing the imaging 
model. (b) Receiver operating characteristic analyses assessing the imaging model in malignancy prediction across datasets. (c) Imaging score 
distribution between benign and cancer samples. (d) Performance evaluation of the imaging model using a 0.292 cutoff in the training set 
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external: P = 0.594), indicating adequate calibration. 
DCA suggested higher net clinical benefit of the com
bined model compared with single-feature models, and 
the incremental predictive value was supported by NRI 
and IDI analyses (Figure S6c, d; Table S5). To ensure 
that performance comparisons between the imaging- 
only, cfDNA-only, and combined models were not 
affected by cohort differences, we re-evaluated all 
models on a unified subset of participants with com
plete imaging and cfDNA data. The results were highly 
consistent with those obtained from the full cohorts, 
with no meaningful differences in AUC, sensitivity, or 
specificity (Table S6). This confirms that our perfor
mance comparisons are robust and not influenced by 
variations in cohort composition.

The diagnostic performance of the combined model 
was further evaluated across various clinical scenarios. 
The cfDNA model generally showed lower performance 
than the imaging model, except in pure solid nodules, 
where it achieved comparable or slightly higher AUCs 
in test sets (Fig. 4d). Notably, incorporating cfDNA 
features significantly improved the performance of the 
combined model over imaging alone for nodules 

measuring 10–20 mm (adjusted P = 0.014, DeLong’s 
test) and for pure solid nodules (adjusted P = 0.011, 
DeLong’s test), yielding substantially higher AUCs 
(Fig. 4e). In addition, the combined model also signif
icantly outperformed the cfDNA model for lesion 
measuring 10–20 mm in both the training (AUC: 0.97 
vs. 0.87; adjusted P = 0.009) and internal test sets (AUC: 
0.99 vs. 0.89; adjusted P = 0.008), as well as for pure 
solid lesions in the training (AUC: 0.93 vs. 0.85; 
adjusted P < 0.001) and internal tests (AUC: 0.93 vs. 
0.85; adjusted P = 0.010). In multivariate logistic 
regression adjusting for clinical and radiological char
acteristics, older age, subsolid nodules, and higher 
combined model score emerged as independent pre
dictors of lung nodule malignancy in the combined test 
sets (n = 448; 351 cancer and 97 benign) (Table 1). 
Collectively, the combined model provides the best 
diagnostic accuracy across various clinical scenarios, as 
indicated by the consistently high AUCs. The perfor
mance of individual methods may vary depending on 
the nodule size and radiological type.

Furthermore, our combined model demonstrated a 
superior ability for malignancy risk stratification 
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compared to single-feature models on the combined 
test sets (Fig. 4f–h). Using the cutoff value of 0.340 
derived from the training set, the combined model 
correctly classified 345 malignant and 55 benign cases 
(Fig. 4f). Notably, compared to the imaging model, 
18.6% (18/97) of benign cases were reclassified as low- 
risk by the combined model, potentially reducing 

unnecessary invasive procedures for definitive cancer 
diagnosis. In contrast, 5.7% (20/351) of malignant cases 
were reclassified as high-risk, aiding in treatment 
planning and preventing delayed cancer treatment 
(Fig. 4g). Similarly, compared to the cfDNA model, 
30.9% (30/97) of benign cases and 5.4% (19/351) of 
malignant cases could benefit from the combined 
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Fig. 4: Performance analyses of the imaging-cfDNA combined model. (a) Receiver operating characteristic analyses assessing the 
combined model in malignancy prediction across datasets. (b) Distribution of cancer prediction scores between benign and cancer samples. 
(c) Performance evaluation of the combined model using a 0.340 cutoff in the training set (95% sensitivity) across datasets. (d) Bar plot 
showing the AUCs of single-feature models (imaging model and cfDNA model) and the combined model across different subgroups. Each bar 
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determined by surgery on the combined test sets. (g, h) Scatter plots showing the reclassification performance achieved by the combined 
model in comparison to the imaging model (g) or the cfDNA model (h).
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model, either by reducing unnecessary invasive pro
cedures or enabling timely cancer intervention 
(Fig. 4h). In direct comparisons between single-feature 
models, 34 participants and 47 participants were 
reclassified as high-risk by either the imaging or cfDNA 
model (Figure S7). Notably, cancer patients correctly 
identified by the imaging model but missed by the 
cfDNA model were exclusively adenocarcinomas 
(P = 0.07) and predominantly presented with subsolid 
nodules (P = 0.07) (Table S7). The statistical signifi
cance became more pronounced when increasing the 
sample size by including participants from the training 
set for the histology subgroup (P = 0.03). Additionally, 
30 participants were correctly classified as low-risk by 
the imaging model but misclassified by the cfDNA 
model, while 20 benign nodules were correctly classi
fied by the cfDNA model but not by the imaging model. 
No significant trends in clinical features were observed 
between the groups.

Taken together, by integrating radiomic and cfDNA 
features, the combined model effectively captures both 
the morphological characteristics and molecular 
insights of lung nodules, significantly enhancing ma
lignancy risk stratification. This approach provides a 
robust and generalizable framework for lung nodule 
classification.

Invasive prediction for further risk stratification 
and personalized treatment
While the malignancy model effectively differentiates 
between benign and malignant nodules, it does not 
distinguish invasive from non-invasive malignancies, 
which is crucial for treatment decision-making 
(Figure S8). To bridge this gap, we developed an inva
sive prediction model that integrates both imaging and 
cfDNA features to enhance risk assessment. The model 
construction and evaluation followed a similar 
approach to the malignancy model but included lung 
cancer patients with nodules <15 mm and invasive 
characteristics (Fig. 5a; Tables S8–S10). This combined 
model outperformed single imaging or cfDNA models, 
achieving the highest diagnostic accuracy, with an AUC 
of 0.884 in the test set and 0.880 in the external vali
dation set (Fig. 5b–d). Notably, the integrated prediction 

score effectively classified patients based on tumor 
aggressiveness, showing a stepwise increase from less- 
invasive to invasive subtypes (P < 0.001; Jonckheere– 
Terpstra test; Fig. 5e–g).

In real-world clinical practice, our machine learning 
model provides a precise and automated solution for 
lung nodule evaluation and risk stratification with 
minimal human intervention (Fig. 6). For individuals 
with ≥ 5 mm LDCT-detected nodules, plasma cfDNA 
and DICOM images can be analyzed using our malig
nancy classification model. Those testing negative can 
proceed with routine annual screening, while those 
testing positive are recommended for further assess
ments through invasive diagnostic methods, such as 
PET-CT and tissue biopsy. Furthermore, with the sup
port of the invasion prediction model, clinicians can 
assess tumor aggressiveness to optimize treatment 
planning. Overall, this multimodal approach provides a 
stepwise risk stratification framework that helps reduce 
unnecessary procedures while minimizing missed 
diagnoses.

Discussion
Accurate risk stratification of lung nodules is essential 
for the early detection of lung cancer and subsequent 
treatment planning. However, conventional screening 
methods such as LDCT often lead to unnecessary 
invasive procedures and potential delays in treatment 
due to their limited specificity and reliance on 
morphological features alone.2 In the DECIPHER- 
NODL study, we developed and evaluated a combined 
model that integrates radiomic features with cfDNA 
fragmentomic characteristics, demonstrating superior 
performance over single-feature models in both 
malignancy classification and tumor invasiveness pre
diction. Our findings highlight the potential of this in
tegrated approach to address key limitations in current 
diagnostic practices.

Radiomic features provide structural and morpho
logical insights from LDCT scans, while cfDNA frag
mentomics reflects underlying tumor biology at the 
molecular level. The combined model achieved signifi
cantly higher AUCs compared to individual models 

Characteristics Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age at diagnosis, year 1.02 (1.00–1.04) 0.026 1.03 (1.00–1.06) 0.026
Sex (Male vs. Female) 0.91 (0.50–1.75) 0.763
Size (>10 mm vs. ≤10 mm) 1.49 (0.91–2.43) 0.111
Radiological type (Subsolida vs. Pure solid) 4.46 (2.71–7.60) <0.001 3.95 (2.07–7.88) <0.001
Combined model score (>0.34 vs. ≤0.34) 75.30 (32.87–205.15) <0.001 68.73 (28.8–194.79) <0.001

Abbreviations: OR, odds ratio; CI, confidence interval. aSubsolid includes pure ground-glass opacity and part-solid subtypes.

Table 1: Logistic regression analyses for cancer prediction in the combined test set.
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(internal and external test: 0.950 and 0.966, respectively, 
vs. single models, all below 0.9), reinforcing the value of 
multi-modal integration in optimizing diagnostic 
accuracy. This aligns with recent studies that have 
demonstrated the complementary nature of radiomics 
and liquid biopsy-based approaches in aiding decision- 
making in clinical practice.23,24 Notably, our model pri
oritizes high sensitivity to minimize the risk of 

misclassifying high-risk patients as benign. With a 
sensitivity of 0.95, the combined model significantly 
improved specificity in both test sets compared to the 
individual models, achieving 0.60 in the internal test 
and 0.46 in the external test set, respectively. The 
model’s performance also varied based on nodule size 
and radiological type, which is consistent with previous 
findings.25,26 Our model performed particularly well in 
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Fig. 5: Development of the invasion model for assessing tumor aggressiveness and treatment planning. (a) Flowchart illustrating the 
workflow for constructing invasion prediction models. (b-d) Receiver operating characteristic analyses evaluating the performance of the 
invasion-imaging model (b), invasion-cfDNA model (c), and the invasion-combined model (d) across datasets. (e-g) Distribution of inva
siveness prediction scores across subgroups stratified by tumor invasiveness for each model. Abbreviations: AIS, adenocarcinoma in situ; MIA, 
minimally invasive adenocarcinoma; IA, invasive adenocarcinoma.
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identifying malignancy in nodules <20 mm, a cohort 
often presenting a significant clinical dilemma due to 
their size and indeterminate appearance on LDCT. This 
strong performance likely stems from the study’s 
enrollment of patients with radiologically indeterminate 
nodules but a higher pre-test probability of malignancy. 
While a slight decrease was observed in nodules 
>20 mm, the model maintained a robust AUC above 
0.88 in validation sets, underscoring the robustness of 
the approach even in larger nodules. Notably, the 
observed complementary performance patterns be
tween the cfDNA and imaging models across different 
radiological subtypes provide key biological and clinical 
insights. The imaging model excelled in classifying 
subsolid nodules (e.g., pure GGO), which are often 
visually distinct but biologically indolent and conse
quently associated with reduced ctDNA release. 
Conversely, the cfDNA model showed superior perfor
mance for pure solid nodules, which are typically more 
aggressive and characterized by increased vascularity 
and necrosis, leading to higher rates of ctDNA shed
ding. This dichotomy not only explains the differential 
performance of single-modality models but also pro
vides a strong rationale for integration. In this regard, 
the combined model synergistically leverages these 
complementary strengths to deliver robust and consis
tently high performance across all subtypes. Further
more, these findings highlight a potential clinical role 
for cfDNA analysis. In pure GGO nodules, which are 
easily detected by LDCT yet create uncertainty 
regarding the need for invasive surgical resection vs. 
ongoing surveillance, a positive result from our cfDNA- 
integrated model serves as a non-invasive readout of the 
potential presence of occult invasive components and 
invasiveness, thereby providing a molecular rationale 
for more aggressive intervention. Thus, the value of 
cfDNA integration extends beyond improved detection 
to enabling non-invasive molecular risk stratification 
for already visible nodules, thereby enabling more 
individualized management strategies based on the 
underlying biology of each lesion.

A key strength of the combined model is its ability to 
refine malignancy risk classification, enabling more 
precise clinical decision-making. Compared to the 
imaging model, it correctly identified 18.6% of benign 
nodules as low risk, potentially reducing unnecessary 
invasive procedures and overtreatment. When compared 
to the cfDNA model, this proportion increased to 30.9%. 
Additionally, the model classified 5.7% of malignant 
nodules as high-risk relative to the imaging model 
(5.4% relative to the cfDNA model), ensuring that these 
patients receive timely and appropriate interventions. 
Our findings align with those reported by Zhao et al., 
who integrated cfDNA methylation, clinical features, and 
imaging characteristics to improve lung nodule diag
nosis.26 However, a key distinction is that their 
model applied the Youden index for cutoff selection, 
whereas we prioritized sensitivity to reduce the risk of 
misclassifying high-risk patients as benign. This 
sensitivity-driven approach demonstrates greater clinical 
significance, particularly in balancing early detection 
with minimizing overdiagnosis.

Beyond malignancy classification, assessing tumor 
invasiveness is critical for prognostication and person
alized treatment planning. In general, AIS and MIS 
have excellent prognoses, with nearly 100% disease- 
specific survival when surgically resected, whereas IA 
carries a higher risk of recurrence and metastasis, 
necessitating more aggressive treatment.27,28 Accurate 
differentiation of these subtypes is crucial, as patients 
with less-invasive tumors may be candidates for sub
lobar resection without adjuvant therapy, while IA often 
requires lobectomy, lymph node dissection, and, in 
some cases, adjuvant targeted therapy or immuno
therapy.29 Our invasion-combined model exhibited 
strong predictive accuracy, achieving an AUC of 0.884 
in the internal test and 0.880 in the external test cohort. 
Given its robust performance, integrating both malig
nancy classification and invasiveness prediction models 
could support clinical decision-making by guiding 
whether patients require further diagnostic procedures 
or treatment, thereby potentially reducing unnecessary 

Average-risk individuals High-risk individuals
nodule size >5mm

Malignancy model prediction
(Imaging-cfDNA combined model)

Invasion model prediction

Enhanced/PET-CT
Tissue biology

Annual screening

LDCT

Fig. 6: Clinical application of models for malignancy risk evaluation and informing personalized treatment plans. Application of the 
combined models for patients with both computed tomography (CT) scan results and plasma cfDNA data.
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invasive interventions. Although this approach differs 
from typical screening strategies based on age and 
smoking history, it addresses a clinically relevant 
problem of minimizing overtreatment of benign nod
ules without compromising lung cancer detection. This 
is particularly relevant given the increasing incidence of 
lung cancer among younger, non-smoking populations, 
especially in Asia.30,31 In the current study, a cutoff 
maintaining 95% sensitivity was applied to a high-risk 
cohort, ensuring that most malignant nodules were 
correctly identified. Even with a modest gain in speci
ficity, this approach can meaningfully reduce unnec
essary follow-up procedures in high-risk patients. While 
cfDNA WGS incurs additional costs, its use is justified 
in this high-risk population, as the clinical benefit of 
avoiding unnecessary interventions outweighs the 
resource burden. Furthermore, while the current study 
focused on surgically resected nodules, the model could 
be adapted as a risk stratification tool in screening 
settings for populations at elevated risk, such as 
smokers or individuals with a family history of lung 
cancer, where CT-based assessments may be incon
clusive. This highlights the model’s dual purpose of 
improving clinical management and supporting early 
detection efforts.

Despite these promising results, several limitations 
should be acknowledged. First, the study population 
consisted exclusively of Chinese participants, which may 
limit the generalizability of our findings to populations 
with different genetic, environmental, or demographic 
backgrounds. Second, the external test cohort had a 
relatively small sample size, highlighting the need for 
future studies with larger, independent cohorts to 
confirm the robustness and generalizability of the 
model’s performance. Third, the study predominantly 
focused on adenocarcinoma, limiting its applicability in 
differentiating other lung cancer subtypes. Fourth, while 
our model effectively stratifies malignancy risk and 
predicts invasiveness, its ability to forecast long-term 
outcomes such as recurrence and overall survival re
mains to be evaluated. In addition, the study was limited 
by its cross-sectional design and the lack of longitudinal 
follow-up for both imaging and cfDNA. Future studies 
should expand the cohort to include a broader range of 
tumor subtypes, conduct multi-center validation, and 
investigate the model’s prognostic value in long-term 
follow-up, including repeated imaging and blood sam
pling. Finally, patient-level predictions in our study were 
based on the most suspicious lesion, typically the largest 
nodule, combined with cfDNA results. Future studies 
could explore fully automated strategies that integrate all 
nodules with cfDNA using different approaches to 
generate robust patient-level predictions.

In conclusion, the DECIPHER-NODL study high
lights the significant potential of integrating imaging 
and cfDNA models to enhance malignancy risk strati
fication in lung cancer. By combining structural and 

molecular data, the model outperforms single-feature 
approaches, providing a robust, non-invasive tool for 
lung nodule classification. Incorporating the invasive
ness prediction model further enhances its utility in 
assessing tumor aggressiveness and guiding personal
ized treatment strategies. These findings support the 
clinical utility of machine learning-based risk assess
ment tools in lung cancer screening, diagnosis, and 
treatment planning, highlighting their role in the future 
of precision oncology.
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