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Summary The Lancet Regional
Background Accurate risk stratification of pulmonary nodules is critical for early lung cancer detection. This study :ea':h ;(;'ngéim
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aimed to improve malignancy classification and invasiveness prediction using machine learning models integrating

101730
low-dose computed tomography (LDCT) radiomics and plasma cell-free DNA (cfDNA) fragmentomics. bublished Onfine 12
ublishe nline

November 2025
Methods This multicenter study enrolled 1356 participants across discovery (n = 1147) and external validation (n = 209)  pps.//doi.org/10.

cohorts. A deep learning-based imaging model processed LDCT scans for automated lung nodule detection and  1016/j.lanwpc.2025.
malignancy classification. A parallel cfDNA model analyzed four whole-genome fragmentation features: copy number 101730

variation, fragment size ratio, fragment-based methylation, and mutation context and signature. The two models were

integrated via a stacked ensemble algorithm. An invasion prediction model evaluated tumor aggressiveness.

Findings The integrated imaging-cfDNA model outperformed individual models, with an AUC of 0.950 (95% CI:
0.926-0.975) in the internal test set and 0.966 (95% CI: 0.940-0.991) in the external validation. The combined
model’s specificity increased to 0.60 (95% CI: 0.49-0.71) while maintaining 95% sensitivity, compared to
specificities of 0.50 (95% CI: 0.41-0.59) and 0.33 (95% CI: 0.23-0.44) at equivalent sensitivity levels for the
imaging and cfDNA models, respectively. The combined model consistently outperformed the other two models
across nodule characteristics, with particular improvement for 10-20 mm and pure solid nodules. The invasion
prediction model stratified lung cancers with an AUC of 0.884 (internal) and 0.880 (external). Prediction scores
increased stepwise with tumor aggressiveness, from adenocarcinoma in situ to minimally invasive
adenocarcinoma, and were highest for invasive adenocarcinoma.

Interpretation This multimodal approach enhances pulmonary nodule risk stratification by integrating radiomic and
molecular biomarkers. The model significantly improves diagnostic accuracy, potentially reducing unnecessary
procedures while minimizing missed diagnoses, supporting its clinical utility in lung cancer screening.
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Research in context

Evidence before this study

We conducted a comprehensive PubMed search using
combinations of the following keywords: (“lung cancer” OR
“pulmonary nodule*” OR “lung nodule*”) AND (“computed
tomography” OR “low-dose CT” OR “imaging” OR
“radiomic*”) AND (“cell-free DNA” OR “cfDNA” OR “liquid
biopsy” OR “DNA methylation” OR “fragmentation”) AND
(“machine learning” OR “deep learning” OR “artificial
intelligence” OR “predictive model”). Numerous studies have
investigated the utility of low-dose CT (LDCT) radiomics and
plasma cell-free DNA (cfDNA) fragmentomics for lung nodule
classification. However, most multimodal approaches to date
have primarily focused on integrating LDCT with cfDNA
methylation profiles. Models that combine LDCT with whole-
genome fragmentomic features, such as copy number
variation (CNV), fragment size ratio (FSR), fragment-based
methylation (FBM), and mutation context and signature
(MCS), remain limited and insufficiently explored.

Added value of this study

To our knowledge, the DECIPHER-NODL study is the first to
integrate deep learning-derived LDCT radiomics with a
cfDNA model encompassing four genome-wide
fragmentation features (CNV, FSR, FBM, and MCS) via a
stacked ensemble algorithm. This multimodal model

Introduction

Lung cancer remains the leading cause of cancer-
related mortality worldwide, with poor survival rates
primarily due to late-stage diagnosis.'! Early cancer
diagnosis provides a unique opportunity for curative
treatment, and low-dose computed tomography (LDCT)
has been widely adopted as a screening tool for high-
risk individuals, significantly reducing lung cancer
mortality.”* While LDCT effectively detects pulmonary
nodules, differentiating between benign and malignant
nodules remains a major clinical challenge. According
to the National Lung Cancer Screening Trial (NLST),
24.2% of participants had at least one nodule, yet only
3.6% of these LDCT-detected nodules were malignant.?
Other studies have also reported high false positive
rates, with up to 20% of surgically resected nodules and
38% of biopsied nodules ultimately found to be
benign.”® Additionally, a substantial proportion
(~50-76%) of detected nodules are indeterminate,

demonstrated superior accuracy compared to individual
imaging or cfDNA models in both internal and external
validation cohorts. Additionally, we developed a novel
invasion prediction model that effectively stratifies tumor
aggressiveness, differentiating adenocarcinoma in situ,
minimally invasive adenocarcinoma, and invasive
adenocarcinoma. Our findings highlight the complementary
value of combining structural imaging features with
molecular fragmentation signals to overcome key challenges
in lung nodule classification, particularly for small or
radiologically ambiguous lesions.

Implications of all the available evidence

Overall, current evidence supports the use of multimodal
diagnostic strategies to improve early lung cancer detection
and risk stratification. Our study contributes a robust, non-
invasive, interpretable, and externally validated model that
enhances both malignancy classification and tumor
invasiveness assessment. Clinical integration of such an
approach has the potential to reduce unnecessary invasive
procedures, minimize false positives, and facilitate earlier,
more personalized treatment decisions. The model holds
particular promise for high-risk populations and clinical
scenarios where radiologic assessments alone are
inconclusive.

leading to unnecessary invasive procedures, patient
anxiety, and increased healthcare burden. Moreover,
the interpretation of CT scans is time-consuming,
labor-intensive, and susceptible to inter- and intra-
rater variability. Therefore, an automated and accurate
classification method that supplements existing diag-
nostic workflows by evaluating pulmonary nodule ma-
lignancy risk would be beneficial for risk stratification
and clinical decision-making.

In this context, artificial intelligence (Al)-based
approaches for automated lung nodule detection and
classification are highly desirable. Most algorithms
employ a two-step strategy, with a first step to detect
candidate nodules with a high specificity, followed by a
second step to reduce false positives.” Once a nodule is
detected, measured, and classified, management
decisions can be determined based on current
clinical guidelines.*"" Patients with highly suspicious
nodules typically undergo histological sampling,
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fluorodeoxyglucose positron emission tomography
(FDG-PET), nonsurgical biopsy, or surgical resection,
whereas those with indeterminate nodules are often
monitored through serial CT surveillance. Meanwhile,
cell-free DNA (cfDNA) fragmentomic analysis has
emerged as a promising liquid biopsy approach, offer-
ing insights into tumor-derived genomic alterations for
early cancer detection. Features such as fragment size
ratio (FSR),” copy number variations (CNV),"* methyl-
ation patterns,'* and nucleosome positioning'® provide
valuable cancer signals. However, individual cfDNA
features often lack sufficient diagnostic accuracy,
particularly for early-stage cancers. Integrating multiple
cfDNA fragmentomic features with LDCT-based image
models holds significant potential to enhance early lung
cancer detection and risk stratification, addressing
current diagnostic limitations and improving clinical
outcomes.

In the DECIPHER-NODL study, we propose a
machine learning (ML)-based approach to classify lung
nodule malignancy risk by integrating radiomic fea-
tures from LDCT scans with cfDNA fragmentomic
characteristics. Our model aims to address the limita-
tions of current diagnostic methods by improving
accuracy, reducing unnecessary interventions, and
providing a robust, non-invasive risk stratification tool.
By leveraging multi-modal data and advanced compu-
tational techniques, our study contributes to the
growing body of research on Al-assisted lung cancer
diagnostics and personalized risk assessment.

Methods
Study population analyzed
The discovery cohort consisted of 1147 retrospectively
collected participants (831 with lung cancer and 316
with benign nodule) who presented at the First Affili-
ated Hospital of Guangzhou Medical University
between May 16, 2014, and December 10, 2021, with
positive LDCT findings and surgically confirmed lung
nodules. The external test cohort (n = 209; 158 with
lung cancer and 51 with benign nodule) was prospec-
tively enrolled at the General Hospital of Eastern
Theater Command between October 11, 2021, and
July 11, 2023. Blood samples were collected at each
patient’s first clinic visit before any systemic treatment.
All Digital Imaging and Communications in Medicine
(DICOM) images were recorded onto CDs and sent to
the central laboratory for image feature extraction.
Written informed consent was obtained from all
participants. The study was conducted in accordance
with the Declaration of Helsinki and was approved by
the Ethics Committee of the First Affiliated Hospital of
Guangzhou Medical University (No. 2021-95).

Eligible patients in both cohorts were adults >18
years old. Enrollment was not restricted by smoking
history or underlying lung disease to capture the full
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spectrum of surgically treated nodules. Standardized
radiologic criteria based on Lung-RADS (version 1.0)
were applied to determine whether a definitive diag-
nosis could be made based on LDCT." Patients were
included if they had pulmonary nodules primarily
5-30 mm in diameter on LDCT and surgical interven-
tion was clinically anticipated. This included both ma-
lignant nodules and high-risk benign nodules that are
difficult to distinguish from malignancies. All patients
were required to provide written informed consent and
have sufficient qualified blood samples available for
analysis.

Exclusion criteria included pregnancy or lactation,
confirmed diagnosis of any other cancer, prior cancer
treatment (surgery, radiotherapy, chemotherapy, targeted
therapy, or immunotherapy) before blood sampling,
current febrile illness or inflammatory disease requiring
treatment within 14 days before blood sampling, history
of organ transplantation or non-autologous (allogeneic)
bone marrow or stem cell transplantation, and any con-
dition deemed unsuitable for study enrollment by the
investigator. Representative examples include uncon-
trolled cardiovascular disease (e.g., NYHA [New York
Heart Association] class III-IV heart failure, recent
myocardial infarction), active infections (e.g., uncon-
trolled HIV [human immunodeficiency virus], replicating
HBYV [hepatitis B virus]/HCV [hepatitis C virus]), severe
autoimmune disorders, long-term high-dose immuno-
suppressive therapy, psychiatric or cognitive disorders
impairing consent or compliance, poor adherence to
prior clinical protocols, imaging contraindications, or
laboratory abnormalities beyond protocol thresholds. For
patients with multiple nodules, only the most suspicious
nodule was included in the analysis, and all performance
metrics were computed at the patient level.

Blood sample processing and low-coverage whole-
genome sequencing

Plasma sample collection, cfDNA extraction, library
preparation, and WGS were conducted sequentially at a
clinical testing laboratory certified by the Clinical
Laboratory Improvement Amendments (CLIA) and
accredited by the College of American Pathologists
(CAP) (Nanjing Geneseeq Technology Inc., Nanjing,
China). Blood samples from the discovery and external
test cohorts were processed in batches: cfDNA extrac-
tion for the discovery cohort was completed in 2021,
with sequencing finalized in 2024, while all sample
processing and sequencing for the external test cohort
were completed in 2023. Importantly, blood samples
were processed within 48 h, and cfDNA was extracted
promptly after plasma separation and frozen directly
at =80 °C until use, without any intermediate freeze—
thaw cycles. In brief, 10 mL of peripheral blood was
collected from each eligible patient in Streck Cell-free
DNA BCT tubes (Streck, #218962). Plasma was sepa-
rated using a two-step centrifugation protocol: an initial
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centrifugation at 1600 g for 10 min at 4 °C, followed by
centrifugation of the supernatant at 16,000 g for 10 min
at 4 °C. cfDNA was extracted immediately after plasma
separation using the QIAamp Circulating Nucleic Acid
Kit (Qiagen Cat. No. 55114) and then frozen directly
at —80 °C until use. cfDNA concentration was assessed
using the dsDNA HS assay kit on a Qubit 3.0 fluo-
rometer (Life Technology, US), and quality was deter-
mined on the Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, USA). For each sample,
5-10 ng of <fDNA was used to construct a PCR-free
WGS library using the KAPA Hyper Prep kit (KAPA
Biosystems). Libraries were sequenced on the
DNBSEQ-T7 platform at 5x coverage.

Sequencing data analysis

Raw sequencing data underwent initial quality control
using Trimmomatic,”” where sequencing adapters and 3’
low-quality bases were removed. Duplicated reads were
filtered using the Picard toolkit (http://broadinstitute.
github.io/picard/). Clean reads were then mapped to
the human reference genome (Hgl9) using the
Burrows-Wheeler Aligner (BWA-mem, v0.7.12; https://
github.com/lh3/bwa/tree/master/bwakit) with default
parameters. Samples with coverage less than 3x were
excluded from downstream analysis due to insufficient
ability for feature calling.

Imaging model development

To mitigate inter-scanner variability resulting from
different LDCT devices across centers, all DICOM
images were resampled to a uniform voxel spacing
(1.25 mm x 1.0 mm x 1.0 mm) using trilinear
interpolation for image data and nearest-neighbor
interpolation for mask data, implemented via the
MONAI framework (https://docs.monai.io/en/stable/
transforms.html#spacingd). This spatial normalization
ensures that each voxel represents the same physical
dimension, reducing scanner-dependent bias while
preserving anatomical fidelity.

Based on these preprocessed and standardized
images, we performed a two-stage deep learning pipe-
line comprising lung nodule detection and benign-
malignant classification. For nodule detection, the
process begins with segmentation of the lung region
from raw CT images using the U-Net (R231) model
implemented in the Lungmask tool (https://github.
com/JoHof/lungmask).”® This step isolates the lung
parenchyma and eliminates interference from extra-
thoracic tissues. Image intensity values are truncated to
the range [-1024, 300] Hounsfield Units (HU) and
normalized to the [0,1] interval to preserve relevant
features of the lung parenchyma and nodules.”

For our study, nodule detection was performed using a
pre-trained 3D RetinaNet model, implemented through
the MONAI framework (https://github.com/Project-
MONAI/MONALI),* using the MONAI lung nodule CT

detection model available on NVIDIA NGC (https://
catalog.ngc.nvidia.com/orgs/nvidia/teams/monaitoolkit/
models/monai_lung_nodule_ct_detection). This model
generated an initial set of nodule candidates, which were
subsequently manually reviewed and confirmed by an
experienced radiologist, establishing the ground truth for
our predictive model. To achieve this, the model was
trained on the LUNA16 dataset and utilizes a 3D ResNet
backbone integrated with a feature pyramid network
(FPN) structure. The anchor generator was configured
with three base shapes — [[6,8,4], [8,6,5], [10,10,6]] — to
accommodate nodules of varying sizes. Multiple data
augmentation strategies were applied during training to
enhance generalizability, including random rotations
(£30°), flipping (50% probability along each axis), scaling
(0.7-1.4x), and Gaussian noise addition (¢ = 0.1). Focal
Loss (o = 0.25, y = 2) was adopted as the classification
loss function, and parameters were updated using the
stochastic gradient descent (SGD) optimizer (learning
rate = le-2, momentum = 0.9). A learning rate schedule
with a 10-epoch warm-up followed by stepwise
decay every 150 epochs (y = 0.1) was employed. Each
training batch comprises four image patches of size
192 x 192 x 80, and training was accelerated via mixed-
precision computing on an NVIDIA 4090 GPU. The
training process spans 300 epochs, and the model with
the best performance on the validation set is retained.
During model validation, a sliding window inference
strategy is applied with a window size of 512 x 512 x 208
and 25% overlap. Non-maximum suppression (NMS)
with an IoU threshold of 0.22 is used to retain the top
100 predicted bounding boxes with the highest confi-
dence scores. Model performance was primarily evalu-
ated using the COCO evaluation metrics, with mean
average precision (mAP) at IoU = 0.1 as the main
criterion (Supplementary Material 1).

All detected nodules undergo standardization by
cropping 3D image patches centered on the nodules’
centroid, with a uniform size of 32 x 32 x 32 voxels to
ensure input consistency. For malignancy classifica-
tion, a 3D convolutional neural network (3D CNN)
model is constructed using the AutoKeras platform
(http://jmlr.org/papers/v24/20-1355.html), trained on
an internal dataset. The model employs the Binary
Focal Cross entropy loss function with a focal factor
(@ = 0.75, y = 2.0), which increases sensitivity to
minority classes and emphasizes hard-to-classify sam-
ples. Model construction is automated via neural ar-
chitecture search (NAS) within the AutoKeras
framework. The search is configured with a maximum
of 200 trials, using the area under the curve (AUC) of
the validation set as the primary selection metric, while
also monitoring the F1 score. The batch size is fixed at
16 to accommodate GPU memory constraints. The
final classifier is selected as the model achieving the
highest validation AUC among the 200 candidate
architectures.
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Whole-genome cfDNA fragmentation features
Four cfDNA features related to fragmentation patterns
were extracted from WGS data: copy number variation
(CNV), fragment size ratio (FSR), fragment-based
methylation (FBM), and mutation context and signa-
ture (MCS).

Copy number variation (CNV)

The copy number variation (CNV) feature extraction was
performed using ichorCNA, as previously described by
Wan et al.”” The genome was segmented into 1 Mb non-
overlapping bins (2475 total) based on the reference
genome. Coverage depth for each bin was corrected for GC
content and compared against the software baseline, after
which ichorCNA computed the log2 ratio for each bin.

Fragment size ratio (FSR)

The extraction of fragment size ratio (FSR) features
followed the method introduced by Mathios et al.”” The
genome was partitioned into 5 Mb non-overlapping
bins, resulting in 541 bins with an average GC con-
tent >0.3 and average mappability >0.9. Reads shorter
than 100 bp or longer than 220 bp were filtered out, and
the remaining short (100-150 bp) and long (151-220
bp) fragments were standardized and transformed into
z-scores with a mean of zero and standard deviation of
1. The ratio of short-to-long fragments was computed
for each bin.

Mutation context and signature (MCS)

Raw FASTQ files were trimmed and aligned to the hg19
human reference genome, followed by duplicate read
removal. Reads were then sorted and indexed into BAM
files using SAMtools (v1.9), and the average sequencing
depth was calculated. Unpaired and low-quality reads
(base quality <30 or mapping quality <40), as well as
those with alternative alignments or template lengths
exceeding 300 bp were excluded. Reads mapping to
repeats or low-complexity regions were masked before
downstream analyses. Paired reads were retained only
if they contained at least one mismatch to the reference
genome at the center of a 3-nt context, where the sub-
stitution was concordant between R1 and R2. Insertions
and deletions were excluded.

Before aggregating single-base substitution (SBS)
features, rigorous quality filters were applied to remove
germline mutations and low-quality noise from cfDNA,
thereby minimizing false positives. Germine mutations
were filtered using an in-house panel of normals and
gnomAD (v2.0). Next, a machine learning ensemble
model,” consisting of a convolutional neural network
(CNN) and a multilayer perceptron (MLP), was
employed to further eliminate low-quality noise and
generate a high-confidence ctDNA SNV mutation list.
True labels were assigned to high-confidence ctDNA
SNV calls in lung cancer patients by comparison to
high-purity tumor samples and white blood cells, while
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false labels were assigned to cfDNA variant-containing
fragments from healthy controls processed in the
same batch and sequenced under the same settings.
Samples used for ctDNA SNV filtering gold standards
were excluded from downstream analyses, such as
cancer vs. non-cancer classification. For modeling, the
CNN model integrated various fragment-level features,
including reference genome sequences, SBS patterns,
fragment length, and quality metrics (e.g., read edit
distance and position within the read). The MLP model
classified regional genomic features overlapping with
mutation-laden fragments, such as replication timing,
which correlates with mutation frequency. Outputs
from both the fragment-level CNN and regional MLP
models were combined in an ensemble framework,
leveraging spatial genomic context and nucleotide-level
sequence information to distinguish ctDNA SNVs from
background cfDNA artifacts.

The final mutation list was used to generate the
mutation context and signature (MCS) features. By
incorporating the adjacent upstream and downstream
nucleotides of each SBS event, classified into six types
(C>A,C>G,C>T, T>A,T>C,and T > G), a total of
96 distinct SBS sequence patterns (6 x 4 x 4) were
defined. The count of each pattern was normalized by
the mean sequencing depth. The final MCS feature
comprised a 96-context mutational profile, with contri-
butions fitted to COSMIC SBS signatures (ver. 3.3.1,
GRCh37) using the R package “MutationalPatterns”.

Fragment-based methylation (FBM)

The extraction of fragment-based methylation (FBM)
features was adapted from Zhou et al.,'* examining
cleavage patterns around cytosine-phosphate-guanine
(CpG) sites to reflect the methylation status of cfDNA.
Theoretically, increased cfDNA cleavage at adjacent
cytosines indicates methylated CpG sites, whereas
unmethylated sites exhibit reduced cleavage. Within
Alu regions, fragment ratios were computed for 8
patterns where the 5’ end breakpoint is either CGN or
NCG, along with the CGN/NCG ratio, resulting in 9
features. Beyond Alu regions, FBM extends to genome-
wide CGCG sites, where fragment ratios were calcu-
lated for 10 patterns based on two categories: CGC and
NCG (C1) or CGN and GCG (C2), alongside the CGC/
NCG and CGN/GCG ratios, contributing an additional
12 features. In total, 21 FBM features are extracted and
processed using a Fully Connected Neural Network
(FCN) to capture intricate relationships within the
methylation landscape, leveraging the interplay
between methylation patterns and cfDNA fragmenta-
tion to enhance cancer detection, classification, and
monitoring with high precision.

cfDNA model development
Each cfDNA feature type (CNV, FSP, FBM, and MCS)
was used as input to construct base models using the
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H20 AutoML package,” which integrates four algorithms:
gradient boosting machine (GBM), generalized linear
model (GLM), XGBoost, and neural networks. Hyper-
parameter tuning was conducted using a random grid
search approach over a list of candidate values. Model
performance was evaluated via 5-fold cross-validation,
where the dataset was split into five subsets, with four
used for training and one for validation in each iteration.
Additionally, runtime constraints, ensemble techniques,
and the use of an independent temporal dataset were
implemented to enhance model generalizability. For each
feature type, the four models with the best AUC were
preserved, and the mean prediction score from these
models was used as the final classification output.

Stacked ensemble model development
The stacked ensemble model was developed by fitting a
GLM using scores from both the imaging and <fDNA
models as two individual covariates. A complete case
analysis was employed, training the GLM only on par-
ticipants with data available for both modalities. To
optimize performance and reduce overfitting, we used 5-
fold cross-validation in the training set. In each iteration
of the 5-fold cross-validation, the entire training cohort
was divided into five subsets, with stratification based on
malignancy classification. Each subset was iteratively
used as the test set, while the remaining four subsets
served as the training set. For each train-test pair, a lo-
gistic regression model was independently trained on
the training set and evaluated on the corresponding test
set, and the average performance across the five test sets
was used as the cross-validation result. Once the cross-
validation was completed, the final model was locked
and evaluated in the test sets with all parameters fixed.
The prediction score of the combined model for
benign-malignant classification was derived using the
following formula:

1

Statistical analysis

All statistical analyses were performed using R software
(v4.3.2). Continuous variables were reported as means
and ranges, while categorical variables were presented
as counts. Student’s t-tests or Wilcoxon rank-sum tests
were used for comparing continuous variables, and
Chi-square tests or Fisher’s Exact tests were used for
categorical variables, as appropriate. Receiver operating
characteristic (ROC) analysis was conducted using the
“pROC” R package, with AUC values assessing
discriminatory ability and DeLong’s test used for com-
parisons between models. Multiple testing corrections
within each subgroup were applied using the
Benjamini-Hochberg method. For proportion-based
performance metrics, 95% confidence intervals (CIs)
were derived from the exact binomial distribution.
Model calibration was assessed using calibration
curves, calibration intercept, calibration slope, and Brier
score to evaluate the agreement between predicted
probabilities and observed outcomes. Decision-curve
analysis (DCA) was performed to determine the po-
tential clinical usefulness of the models across a range
of threshold probabilities. Net reclassification
improvement (NRI) and integrated discrimination
improvement (IDI) were calculated to quantify the in-
cremental predictive value of the integrated model
compared with the imaging-only and cfDNA-only
models. Bootstrap resampling was used to estimate
95% Cls for calibration, DCA, NRI, and IDI. The
stacked model, which integrates both imaging and
cfDNA features, was designed to identify malignant
lung nodules for further clinicopathological examina-
tion, including PET-CT and tissue biopsy, while
directing low-risk patients to active LDCT surveillance.
Therefore, a sensitivity threshold of 95% was set,
allowing performance comparisons across models.
Unless otherwise specified, all reported P-values were

Prediction Score =

1+¢ (—8,94769160 + 5.49825152 x Image score + 9.99599241 x cfDNA score )

where the image score is the risk score generated by the
image model, and the cfDNA score is the risk score
generated by the cfDNA model.

For the invasiveness prediction task, only patients
with pathologically confirmed lung cancer were included
in both training and testing, as the goal was to differ-
entiate tumor aggressiveness rather than to distinguish
benign from malignant lesions. The prediction score of
the invasion-combined model was derived as follows:

two-tailed, with statistical significance defined as
P < 0.05.

Ethics approval

The study was approved by the Ethics Committee of the
First Affiliated Hospital of Guangzhou Medical
University (Approval number: No. 2021-95; Approval
date: September 30, 2021). Written informed consent
was obtained from each patient before sample collection.

1

Prediction Score (Invasion) =

1+¢ (—12.22995711+14.79213838 x Image score + 4.39406150 x cfDNA score )
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Role of the funding source
The funders of the study had no role in the study
design, data collection, data analysis, data interpreta-
tion, or writing of the report.

Results

Dataset characteristics

We recruited a total of 1356 participants for the devel-
opment and evaluation of three models, including 1147
in the discovery cohort and 209 in the external test
cohort (Fig. 1; Figures S1 and S2). The discovery cohort
consisted of 831 lung cancer patients and 316 partici-
pants with surgically confirmed benign nodules. Of
these, 417 participants were used to train the imaging-
cfDNA combined model (hereafter referred to as the
“combined model”), while 288 were allocated to the
internal test set for model performance evaluation
(Table S1). The combined model was independently
validated on an external cohort comprising 136 malig-
nant and 24 benign nodules. Among the 705 partici-
pants in the discovery cohort, 78.1% (550/705) were
above 50 years old, and approximately half were male.
About 45% of nodules were subsolid, including 18.4%
(1330/705) pure GGOs and 25.7% (181/705) part-solid
nodules. In terms of nodule size, 43.5% (307/705)
were classified as intermediate (10-20 mm), while large
(>20 mm) and small (<10 mm) nodules accounted for
38.9% and 17.4%, respectively. Overall, 74.1% (522/
705) of cases were malignant, whereas 25.9% (183/705)
were benign. Two-thirds of participants with malignant

nodules had stage I/II cancer. The external test set
comprised 160 participants, with 59.4% females and
40.6% males. The participant demographic and clinical
characteristics are shown in Table S1.

Performance evaluation of the imaging model

The imaging model, developed using deep learning
(DL) algorithms for automated nodule detection, lung
window filtering, and benign-malignant classification,
demonstrated strong diagnostic accuracy across data-
sets (Fig. 1; Fig. 2a; Figures S1 and S3). The baseline
characteristics of participants used for imaging
model construction and validation are detailed in
Table S2. The model achieved an AUC of 0.934
(95% CI: 0.915-0.951) in the training set, 0.883 (95%
CI: 0.851-0.915) in the internal test set, and 0.906 (95%
CI: 0.849-0.963) in the external test set (Fig. 2b). Im-
aging scores were significantly higher in malignant
cases compared to benign nodules across all datasets
(P < 0.001, Wilcoxon rank-sum test; Fig. 2c). Given that
the lung nodules were suspicious and surgery was
anticipated based on LDCT scans, our study prioritized
high sensitivity to minimize the risk of missed di-
agnoses. Using a cutoff value of 0.292 calculated based
on 95% sensitivity on the training set, the imaging
model achieved a specificity of 0.50 (56/112) in the in-
ternal test set and 0.29 (7/24) in the external test set.
The lower specificity in the external test set was likely
influenced by its patient demographics and the limited
number of benign nodules, which may amplify vari-
ance. These findings underscore the need for further

Discovery cohort
BN: n=316; LC: n=831

External test cohort
Prospective enroliment

Image model
BN: n=300; LC: n=821

CT dicom nodule detected by 3D RetinaNet
Lung window filtered by 3D U-Net
BN and LC distinguished by 3D ResNet50
I
Randomly split into 6:4 |

v
External test cohort

GBM, GLM, XGBoost, DL algorithm learning

(cfDNA model)

cfDNA Fragmentomic feature Generation
BN: n=41; LC: n=149

(CNV, FSR, FBM, MCS)

v ! v

Training cohort
BN: n=188; LC: n=485

Training cohort
BN: n=124; LC: n=314

Internal test cohort External test cohort

BN: n=73; LC: n=215 (Image model)
BN: n=24; LC: n=136

I
Internal test cohort
BN: n=112; LC: n=336

N idati | [ Model validati
Model locked { Model v | | Model locked | | |
Combined model: training
L «— |
BN: n=110, LC: n=307 v
‘ External test cohort
‘| Combined model: luation (combined model)
) BN: n=73, LC: n=215 ‘ BN: n=24; LC: n=136

Fig. 1: Flowchart depicting the workflow for developing malignancy prediction models. Abbreviations: BN, benign nodule; LC, lung
cancer; CT, computed tomography; CNV, copy number variation; FSR, fragment size ratio; FBM, fragment-based methylation; MCS, mutation
context and signature; GBM, gradient boosting machine; GLM, generalized linear model.
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(95% sensitivity) across datasets.

evaluation in larger cohorts to improve specificity and
generalizability.

Performance evaluation of the cfDNA model

The cfDNA model was developed based on four whole-
genome fragmentation features derived from plasma
ctDNA, including copy number variation (CNV),
fragment size ratio (FSR), mutation context and signa-
ture (MCS), and fragment-based methylation (FBM)
(Fig. 1; Fig. 3a; Figures S1 and S4). These features were
selected for their ability to provide comprehensive in-
sights into tumor biology by analyzing ctDNA charac-
teristics. The baseline characteristics of participants
used for cfDNA model construction and validation are
presented in Table S3. The cfDNA model achieved an
AUC 0of 0.860 (95% CI: 0.821-0.900) in the training set,
0.855 (95% CI: 0.807-0.904) in the test set, and 0.858
(95% CI: 0.791-0.924) in the external set (Fig. 3b).
cfDNA scores were markedly higher in malignant cases
compared to benign nodules (P < 0.001; Fig. 3c). Using
a cutoff value of 0.582 for 95% sensitivity on the
training set, the model accurately identified 94.0%
(202/215) and 98.7% (147/149) of malignant nodules,
while maintaining reasonable specificity across the test
sets (internal test set: 0.33; external test set: 0.44)
(Fig. 3d).

Improved malignancy risk assessment via
combining the imaging and cfDNA models
Theoretically, the imaging model may excel at capturing
structural and morphological characteristics, while the
cfDNA model offers molecular insights that can reveal

genetic changes associated with malignancy. Building
on previous evaluations of single models, we developed
an ensemble stacked model that integrates the
strengths of both models to further improve diagnostic
accuracy (Fig. 1; Figure S1; Table S4). Our results
demonstrated that the combined model significantly
outperformed single-feature models, achieving an AUC
0f 0.952 (95% CI: 0.933-0.971) in the training set, 0.950
(95% CI: 0.926-0.975) in the internal test set, and 0.966
(95% CI: 0.940-0.991) in the external test set (Fig. 4a).
Additionally, the combined model generated prediction
scores that effectively distinguished between malignant
and benign nodules (P < 0.001; Fig. 4b). No significant
differences were observed among benign nodule sub-
types (Figure S5). Notably, the specificity improved
from 0.50 (95% CI: 0.41-0.59) for the imaging model
and 0.33 (95% CI: 0.23-0.44) for the cfDNA model to
0.60 (95% CI: 0.49-0.71) for the combined model in
the internal test set (Fig. 4c). In independent validation,
the specificity further increased from 0.44 (95% CI:
0.30-0.59) in the cfDNA model to 0.46 (95% CI:
0.28-0.65) in the combined model. Calibration analysis
showed good agreement between predicted and
observed malignancy probabilities (Figure S6a, b). In
the internal test set, the intercept was —0.192 (95%
CI: —0.646 to 0.262), the slope 1.272 (95% CI: 0.968-
1.577), and the Brier score 0.077 (95% CI: 0.060-0.097).
In the external test set, the intercept was -0.750
(95% CI: —1.748 to 0.248), the slope 1.429 (95% CI:
0.876-1.982), and the Brier score 0.056 (95% CI:
0.032-0.081). Hosmer-Lemeshow tests were non-
significant in both cohorts (internal: P = 0.555;
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external: P = 0.594), indicating adequate calibration.
DCA suggested higher net clinical benefit of the com-
bined model compared with single-feature models, and
the incremental predictive value was supported by NRI
and IDI analyses (Figure S6c, d; Table S5). To ensure
that performance comparisons between the imaging-
only, cfDNA-only, and combined models were not
affected by cohort differences, we re-evaluated all
models on a unified subset of participants with com-
plete imaging and cfDNA data. The results were highly
consistent with those obtained from the full cohorts,
with no meaningful differences in AUC, sensitivity, or
specificity (Table S6). This confirms that our perfor-
mance comparisons are robust and not influenced by
variations in cohort composition.

The diagnostic performance of the combined model
was further evaluated across various clinical scenarios.
The cfDNA model generally showed lower performance
than the imaging model, except in pure solid nodules,
where it achieved comparable or slightly higher AUCs
in test sets (Fig. 4d). Notably, incorporating cfDNA
features significantly improved the performance of the
combined model over imaging alone for nodules

www.thelancet.com Vol 64 November, 2025

measuring 10-20 mm (adjusted P = 0.014, DeLong’s
test) and for pure solid nodules (adjusted P = 0.011,
Delong’s test), yielding substantially higher AUCs
(Fig. 4e). In addition, the combined model also signif-
icantly outperformed the cfDNA model for lesion
measuring 10-20 mm in both the training (AUC: 0.97
vs. 0.87; adjusted P = 0.009) and internal test sets (AUC:
0.99 vs. 0.89; adjusted P = 0.008), as well as for pure
solid lesions in the training (AUC: 0.93 vs. 0.85;
adjusted P < 0.001) and internal tests (AUC: 0.93 vs.
0.85; adjusted P = 0.010). In multivariate logistic
regression adjusting for clinical and radiological char-
acteristics, older age, subsolid nodules, and higher
combined model score emerged as independent pre-
dictors of lung nodule malignancy in the combined test
sets (n = 448; 351 cancer and 97 benign) (Table 1).
Collectively, the combined model provides the best
diagnostic accuracy across various clinical scenarios, as
indicated by the consistently high AUCs. The perfor-
mance of individual methods may vary depending on
the nodule size and radiological type.

Furthermore, our combined model demonstrated a
superior ability for malignancy risk stratification
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compared to single-feature models on the combined
test sets (Fig. 4f-h). Using the cutoff value of 0.340
derived from the training set, the combined model
correctly classified 345 malignant and 55 benign cases
(Fig. 4f). Notably, compared to the imaging model,
18.6% (18/97) of benign cases were reclassified as low-
risk by the combined model, potentially reducing

unnecessary invasive procedures for definitive cancer
diagnosis. In contrast, 5.7% (20/351) of malignant cases
were reclassified as high-risk, aiding in treatment
planning and preventing delayed cancer treatment
(Fig. 4g). Similarly, compared to the cfDNA model,
30.9% (30/97) of benign cases and 5.4% (19/351) of
malignant cases could benefit from the combined
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Characteristics Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% Cl) P-value
Age at diagnosis, year 1.02 (1.00-1.04) 0.026 1.03 (1.00-1.06) 0.026
Sex (Male vs. Female) 0.91 (0.50-1.75) 0.763
Size (>10 mm vs. <10 mm) 1.49 (0.91-2.43) 0.111
Radiological type (Subsolid” vs. Pure solid) 4.46 (2.71-7.60) <0.001 3.95 (2.07-7.88) <0.001
Combined model score (>0.34 vs. <0.34) 75.30 (32.87-205.15) <0.001 68.73 (28.8-194.79) <0.001

Abbreviations: OR, odds ratio; Cl, confidence interval. *Subsolid includes pure ground-glass opacity and part-solid subtypes.

Table 1: Logistic regression analyses for cancer prediction in the combined test set.

model, either by reducing unnecessary invasive pro-
cedures or enabling timely cancer intervention
(Fig. 4h). In direct comparisons between single-feature
models, 34 participants and 47 participants were
reclassified as high-risk by either the imaging or cfDNA
model (Figure S7). Notably, cancer patients correctly
identified by the imaging model but missed by the
cfDNA model were exclusively adenocarcinomas
(P = 0.07) and predominantly presented with subsolid
nodules (P = 0.07) (Table S7). The statistical signifi-
cance became more pronounced when increasing the
sample size by including participants from the training
set for the histology subgroup (P = 0.03). Additionally,
30 participants were correctly classified as low-risk by
the imaging model but misclassified by the cfDNA
model, while 20 benign nodules were correctly classi-
fied by the c¢fDNA model but not by the imaging model.
No significant trends in clinical features were observed
between the groups.

Taken together, by integrating radiomic and cfDNA
features, the combined model effectively captures both
the morphological characteristics and molecular
insights of lung nodules, significantly enhancing ma-
lignancy risk stratification. This approach provides a
robust and generalizable framework for lung nodule
classification.

Invasive prediction for further risk stratification
and personalized treatment

While the malignancy model effectively differentiates
between benign and malignant nodules, it does not
distinguish invasive from non-invasive malignancies,
which is crucial for treatment decision-making
(Figure S8). To bridge this gap, we developed an inva-
sive prediction model that integrates both imaging and
cfDNA features to enhance risk assessment. The model
construction and evaluation followed a similar
approach to the malignancy model but included lung
cancer patients with nodules <15 mm and invasive
characteristics (Fig. 5a; Tables S8-S10). This combined
model outperformed single imaging or cfDNA models,
achieving the highest diagnostic accuracy, with an AUC
of 0.884 in the test set and 0.880 in the external vali-
dation set (Fig. 5b—d). Notably, the integrated prediction
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score effectively classified patients based on tumor
aggressiveness, showing a stepwise increase from less-
invasive to invasive subtypes (P < 0.001; Jonckheere—
Terpstra test; Fig. Se—g).

In real-world clinical practice, our machine learning
model provides a precise and automated solution for
lung nodule evaluation and risk stratification with
minimal human intervention (Fig. 6). For individuals
with > 5 mm LDCT-detected nodules, plasma cfDNA
and DICOM images can be analyzed using our malig-
nancy classification model. Those testing negative can
proceed with routine annual screening, while those
testing positive are recommended for further assess-
ments through invasive diagnostic methods, such as
PET-CT and tissue biopsy. Furthermore, with the sup-
port of the invasion prediction model, clinicians can
assess tumor aggressiveness to optimize treatment
planning. Overall, this multimodal approach provides a
stepwise risk stratification framework that helps reduce
unnecessary procedures while minimizing missed
diagnoses.

Discussion

Accurate risk stratification of lung nodules is essential
for the early detection of lung cancer and subsequent
treatment planning. However, conventional screening
methods such as LDCT often lead to unnecessary
invasive procedures and potential delays in treatment
due to their limited specificity and reliance on
morphological features alone.? In the DECIPHER-
NODL study, we developed and evaluated a combined
model that integrates radiomic features with cfDNA
fragmentomic characteristics, demonstrating superior
performance over single-feature models in both
malignancy classification and tumor invasiveness pre-
diction. Our findings highlight the potential of this in-
tegrated approach to address key limitations in current
diagnostic practices.

Radiomic features provide structural and morpho-
logical insights from LDCT scans, while cfDNA frag-
mentomics reflects underlying tumor biology at the
molecular level. The combined model achieved signifi-
cantly higher AUCs compared to individual models

11
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Fig. 5: Development of the invasion model for assessing tumor aggressiveness and treatment planning. (a) Flowchart illustrating the
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(internal and external test: 0.950 and 0.966, respectively,
vs. single models, all below 0.9), reinforcing the value of
multi-modal integration in optimizing diagnostic
accuracy. This aligns with recent studies that have
demonstrated the complementary nature of radiomics
and liquid biopsy-based approaches in aiding decision-
making in clinical practice.?*** Notably, our model pri-
oritizes high sensitivity to minimize the risk of

misclassifying high-risk patients as benign. With a
sensitivity of 0.95, the combined model significantly
improved specificity in both test sets compared to the
individual models, achieving 0.60 in the internal test
and 0.46 in the external test set, respectively. The
model’s performance also varied based on nodule size
and radiological type, which is consistent with previous
findings.”*** Our model performed particularly well in
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identifying malignancy in nodules <20 mm, a cohort
often presenting a significant clinical dilemma due to
their size and indeterminate appearance on LDCT. This
strong performance likely stems from the study’s
enrollment of patients with radiologically indeterminate
nodules but a higher pre-test probability of malignancy.
While a slight decrease was observed in nodules
>20 mm, the model maintained a robust AUC above
0.88 in validation sets, underscoring the robustness of
the approach even in larger nodules. Notably, the
observed complementary performance patterns be-
tween the cfDNA and imaging models across different
radiological subtypes provide key biological and clinical
insights. The imaging model excelled in classifying
subsolid nodules (e.g., pure GGO), which are often
visually distinct but biologically indolent and conse-
quently associated with reduced ctDNA release.
Conversely, the cfDNA model showed superior perfor-
mance for pure solid nodules, which are typically more
aggressive and characterized by increased vascularity
and necrosis, leading to higher rates of ctDNA shed-
ding. This dichotomy not only explains the differential
performance of single-modality models but also pro-
vides a strong rationale for integration. In this regard,
the combined model synergistically leverages these
complementary strengths to deliver robust and consis-
tently high performance across all subtypes. Further-
more, these findings highlight a potential clinical role
for cfDNA analysis. In pure GGO nodules, which are
easily detected by LDCT vyet create uncertainty
regarding the need for invasive surgical resection vs.
ongoing surveillance, a positive result from our cfDNA-
integrated model serves as a non-invasive readout of the
potential presence of occult invasive components and
invasiveness, thereby providing a molecular rationale
for more aggressive intervention. Thus, the value of
cfDNA integration extends beyond improved detection
to enabling non-invasive molecular risk stratification
for already visible nodules, thereby enabling more
individualized management strategies based on the
underlying biology of each lesion.
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A key strength of the combined model is its ability to
refine malignancy risk classification, enabling more
precise clinical decision-making. Compared to the
imaging model, it correctly identified 18.6% of benign
nodules as low risk, potentially reducing unnecessary
invasive procedures and overtreatment. When compared
to the cfDNA model, this proportion increased to 30.9%.
Additionally, the model classified 5.7% of malignant
nodules as high-risk relative to the imaging model
(5.4% relative to the cfDNA model), ensuring that these
patients receive timely and appropriate interventions.
Our findings align with those reported by Zhao et al.,
who integrated cfDNA methylation, clinical features, and
imaging characteristics to improve lung nodule diag-
nosis.”® However, a key distinction is that their
model applied the Youden index for cutoff selection,
whereas we prioritized sensitivity to reduce the risk of
misclassifying high-risk patients as benign. This
sensitivity-driven approach demonstrates greater clinical
significance, particularly in balancing early detection
with minimizing overdiagnosis.

Beyond malignancy classification, assessing tumor
invasiveness is critical for prognostication and person-
alized treatment planning. In general, AIS and MIS
have excellent prognoses, with nearly 100% disease-
specific survival when surgically resected, whereas IA
carries a higher risk of recurrence and metastasis,
necessitating more aggressive treatment.””* Accurate
differentiation of these subtypes is crucial, as patients
with less-invasive tumors may be candidates for sub-
lobar resection without adjuvant therapy, while IA often
requires lobectomy, lymph node dissection, and, in
some cases, adjuvant targeted therapy or immuno-
therapy.”” Our invasion-combined model exhibited
strong predictive accuracy, achieving an AUC of 0.884
in the internal test and 0.880 in the external test cohort.
Given its robust performance, integrating both malig-
nancy classification and invasiveness prediction models
could support clinical decision-making by guiding
whether patients require further diagnostic procedures
or treatment, thereby potentially reducing unnecessary
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invasive interventions. Although this approach differs
from typical screening strategies based on age and
smoking history, it addresses a clinically relevant
problem of minimizing overtreatment of benign nod-
ules without compromising lung cancer detection. This
is particularly relevant given the increasing incidence of
lung cancer among younger, non-smoking populations,
especially in Asia.”*' In the current study, a cutoff
maintaining 95% sensitivity was applied to a high-risk
cohort, ensuring that most malignant nodules were
correctly identified. Even with a modest gain in speci-
ficity, this approach can meaningfully reduce unnec-
essary follow-up procedures in high-risk patients. While
cfDNA WGS incurs additional costs, its use is justified
in this high-risk population, as the clinical benefit of
avoiding unnecessary interventions outweighs the
resource burden. Furthermore, while the current study
focused on surgically resected nodules, the model could
be adapted as a risk stratification tool in screening
settings for populations at elevated risk, such as
smokers or individuals with a family history of lung
cancer, where CT-based assessments may be incon-
clusive. This highlights the model’s dual purpose of
improving clinical management and supporting early
detection efforts.

Despite these promising results, several limitations
should be acknowledged. First, the study population
consisted exclusively of Chinese participants, which may
limit the generalizability of our findings to populations
with different genetic, environmental, or demographic
backgrounds. Second, the external test cohort had a
relatively small sample size, highlighting the need for
future studies with larger, independent cohorts to
confirm the robustness and generalizability of the
model’s performance. Third, the study predominantly
focused on adenocarcinoma, limiting its applicability in
differentiating other lung cancer subtypes. Fourth, while
our model effectively stratifies malignancy risk and
predicts invasiveness, its ability to forecast long-term
outcomes such as recurrence and overall survival re-
mains to be evaluated. In addition, the study was limited
by its cross-sectional design and the lack of longitudinal
follow-up for both imaging and cfDNA. Future studies
should expand the cohort to include a broader range of
tumor subtypes, conduct multi-center validation, and
investigate the model’s prognostic value in long-term
follow-up, including repeated imaging and blood sam-
pling. Finally, patient-level predictions in our study were
based on the most suspicious lesion, typically the largest
nodule, combined with cfDNA results. Future studies
could explore fully automated strategies that integrate all
nodules with cfDNA using different approaches to
generate robust patient-level predictions.

In conclusion, the DECIPHER-NODL study high-
lights the significant potential of integrating imaging
and cfDNA models to enhance malignancy risk strati-
fication in lung cancer. By combining structural and

molecular data, the model outperforms single-feature
approaches, providing a robust, non-invasive tool for
lung nodule classification. Incorporating the invasive-
ness prediction model further enhances its utility in
assessing tumor aggressiveness and guiding personal-
ized treatment strategies. These findings support the
clinical utility of machine learning-based risk assess-
ment tools in lung cancer screening, diagnosis, and
treatment planning, highlighting their role in the future
of precision oncology.
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